(From the given selection and stats provided)

Suppose you are the General Manager of a baseball team, and you are selecting two players for your team. You have a budget of $10,500,000, and you have the choice between the following players:

Given your budget and the player statistics, which two players would you select?

I am going to use an equation which calculates the dollar per run scored and so I am going to be looking for LOWER values of the vector “Value”

#Yandy DIaz:
OBP<-0.403
SLG<-0.511
Salary1<- 8000000
RunsScored<- -804.63 + (2737.77 * OBP) + (1584.91 * SLG)
Value1<-Salary1/RunsScored
Value1
[1] 7216.437
#Joey Meneses:
OBP<-0.320
SLG<-0.366
Salary2<- 723600
RunsScored<- -804.63 + (2737.77 * OBP) + (1584.91 * SLG)
Value2<-Salary2/RunsScored
Value2
[1] 1110.611
#Jose Abreu:
OBP<-0.292
SLG<-0.358
Salary3<- 19500000
RunsScored<- -804.63 + (2737.77 * OBP) + (1584.91 * SLG)
Value3<-Salary3/RunsScored
Value3
[1] 34685.37
#Ryan Noda:
OBP<-0.384
SLG<-0.400
Salary4<- 720000
RunsScored<- -804.63 + (2737.77 * OBP) + (1584.91 * SLG)
Value4<-Salary4/RunsScored
Value4
[1] 817.5894
#Nate Lowe:
OBP<-0.365
SLG<-0.426
Salary5<- 4050000
RunsScored<- -804.63 + (2737.77 * OBP) + (1584.91 * SLG)
Value5<-Salary5/RunsScored
Value5
[1] 4656.094
print("Yandy Diaz")
[1] "Yandy Diaz"
Value1
[1] 7216.437
Salary1
[1] 8e+06
print("Joey Meneses")
[1] "Joey Meneses"
Value2
[1] 1110.611
Salary2
[1] 723600
print("Jose Abreu")
[1] "Jose Abreu"
Value3
[1] 34685.37
Salary3
[1] 19500000
print("Ryan Noda")
[1] "Ryan Noda"
Value4
[1] 817.5894
Salary4
[1] 720000
print("Nate Lowe")
[1] "Nate Lowe"
Value5
[1] 4656.094
Salary5
[1] 4050000

WIth a budget of $10,500,000 and only being allowed 2 players:

-we cannot afford Jose Abreu, so he is off the list

-We CAN afford Diaz and either Meneses or Lowe. -We CAN also afford any combination of two of Meneses, Lowe, and Noda

-As far as who maximizes our cost efficiency and gets us the most runs scored for the least amount of money spent:

-It makes sense to go with the two lowest scores for VALUE which are -Ryan Noda -Joey Meneses

This saves up the majority fo our budget for future player aquisition.

This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.

plot(cars)

Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Ctrl+Alt+I.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).

The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.

LS0tCnRpdGxlOiAiSW4tY2xhc3MgYWN0aXZpdHkjOTogQ2hvb3NpbmcgYW1vbmcgRGlmZmVyZW50IFBsYXllcnMiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCgooRnJvbSB0aGUgZ2l2ZW4gc2VsZWN0aW9uIGFuZCBzdGF0cyBwcm92aWRlZCkKClN1cHBvc2UgeW91IGFyZSB0aGUgR2VuZXJhbCBNYW5hZ2VyIG9mIGEgYmFzZWJhbGwgdGVhbSwgYW5kIHlvdSBhcmUgc2VsZWN0aW5nIHR3byBwbGF5ZXJzIGZvciB5b3VyIHRlYW0uIFlvdSBoYXZlIGEgYnVkZ2V0IG9mICQxMCw1MDAsMDAwLCBhbmQgeW91IGhhdmUgdGhlIGNob2ljZSBiZXR3ZWVuIHRoZSBmb2xsb3dpbmcgcGxheWVyczoKCioqKkdpdmVuIHlvdXIgYnVkZ2V0IGFuZCB0aGUgcGxheWVyIHN0YXRpc3RpY3MsIHdoaWNoIHR3byBwbGF5ZXJzIHdvdWxkIHlvdSBzZWxlY3Q/KioqCgpJIGFtIGdvaW5nIHRvIHVzZSBhbiBlcXVhdGlvbiB3aGljaCBjYWxjdWxhdGVzIHRoZSBkb2xsYXIgcGVyIHJ1biBzY29yZWQgYW5kIHNvIEkgYW0gZ29pbmcgdG8gYmUgbG9va2luZyBmb3IgTE9XRVIgdmFsdWVzIG9mIHRoZSB2ZWN0b3IgIlZhbHVlIgoKYGBge3J9CiNZYW5keSBESWF6OgpPQlA8LTAuNDAzClNMRzwtMC41MTEKU2FsYXJ5MTwtIDgwMDAwMDAKUnVuc1Njb3JlZDwtIC04MDQuNjMgKyAoMjczNy43NyAqIE9CUCkgKyAoMTU4NC45MSAqIFNMRykKVmFsdWUxPC1TYWxhcnkxL1J1bnNTY29yZWQKVmFsdWUxCmBgYAoKCmBgYHtyfQojSm9leSBNZW5lc2VzOgpPQlA8LTAuMzIwClNMRzwtMC4zNjYKU2FsYXJ5MjwtIDcyMzYwMApSdW5zU2NvcmVkPC0gLTgwNC42MyArICgyNzM3Ljc3ICogT0JQKSArICgxNTg0LjkxICogU0xHKQpWYWx1ZTI8LVNhbGFyeTIvUnVuc1Njb3JlZApWYWx1ZTIKYGBgCgoKYGBge3J9CiNKb3NlIEFicmV1OgpPQlA8LTAuMjkyClNMRzwtMC4zNTgKU2FsYXJ5MzwtIDE5NTAwMDAwClJ1bnNTY29yZWQ8LSAtODA0LjYzICsgKDI3MzcuNzcgKiBPQlApICsgKDE1ODQuOTEgKiBTTEcpClZhbHVlMzwtU2FsYXJ5My9SdW5zU2NvcmVkClZhbHVlMwpgYGAKCgpgYGB7cn0KI1J5YW4gTm9kYToKT0JQPC0wLjM4NApTTEc8LTAuNDAwClNhbGFyeTQ8LSA3MjAwMDAKUnVuc1Njb3JlZDwtIC04MDQuNjMgKyAoMjczNy43NyAqIE9CUCkgKyAoMTU4NC45MSAqIFNMRykKVmFsdWU0PC1TYWxhcnk0L1J1bnNTY29yZWQKVmFsdWU0CmBgYAoKCmBgYHtyfQojTmF0ZSBMb3dlOgpPQlA8LTAuMzY1ClNMRzwtMC40MjYKU2FsYXJ5NTwtIDQwNTAwMDAKUnVuc1Njb3JlZDwtIC04MDQuNjMgKyAoMjczNy43NyAqIE9CUCkgKyAoMTU4NC45MSAqIFNMRykKVmFsdWU1PC1TYWxhcnk1L1J1bnNTY29yZWQKVmFsdWU1CmBgYAoKCmBgYHtyfQpwcmludCgiWWFuZHkgRGlheiIpClZhbHVlMQpTYWxhcnkxCgpwcmludCgiSm9leSBNZW5lc2VzIikKVmFsdWUyClNhbGFyeTIKCnByaW50KCJKb3NlIEFicmV1IikKVmFsdWUzClNhbGFyeTMKCnByaW50KCJSeWFuIE5vZGEiKQpWYWx1ZTQKU2FsYXJ5NAoKcHJpbnQoIk5hdGUgTG93ZSIpClZhbHVlNQpTYWxhcnk1CmBgYApXSXRoIGEgYnVkZ2V0IG9mICQxMCw1MDAsMDAwIGFuZCBvbmx5IGJlaW5nIGFsbG93ZWQgMiBwbGF5ZXJzOgoKLXdlIGNhbm5vdCBhZmZvcmQgSm9zZSBBYnJldSwgc28gaGUgaXMgb2ZmIHRoZSBsaXN0CgotV2UgQ0FOIGFmZm9yZCBEaWF6IGFuZCBlaXRoZXIgTWVuZXNlcyBvciBMb3dlLgotV2UgQ0FOIGFsc28gYWZmb3JkIGFueSBjb21iaW5hdGlvbiBvZiB0d28gb2YgTWVuZXNlcywgTG93ZSwgYW5kIE5vZGEKCi1BcyBmYXIgYXMgd2hvIG1heGltaXplcyBvdXIgY29zdCBlZmZpY2llbmN5IGFuZCBnZXRzIHVzIHRoZSBtb3N0IHJ1bnMgc2NvcmVkIGZvciB0aGUgbGVhc3QgYW1vdW50IG9mIG1vbmV5IHNwZW50OgoKLUl0IG1ha2VzIHNlbnNlIHRvIGdvIHdpdGggdGhlIHR3byBsb3dlc3Qgc2NvcmVzIGZvciBWQUxVRSB3aGljaCBhcmUKLVJ5YW4gTm9kYQotSm9leSBNZW5lc2VzCgpUaGlzIHNhdmVzIHVwIHRoZSBtYWpvcml0eSBmbyBvdXIgYnVkZ2V0IGZvciBmdXR1cmUgcGxheWVyIGFxdWlzaXRpb24uCgoKYGBge3J9CmBgYAoKCmBgYHtyfQpgYGAKCgpgYGB7cn0KYGBgCgoKYGBge3J9CmBgYAoKVGhpcyBpcyBhbiBbUiBNYXJrZG93bl0oaHR0cDovL3JtYXJrZG93bi5yc3R1ZGlvLmNvbSkgTm90ZWJvb2suIFdoZW4geW91IGV4ZWN1dGUgY29kZSB3aXRoaW4gdGhlIG5vdGVib29rLCB0aGUgcmVzdWx0cyBhcHBlYXIgYmVuZWF0aCB0aGUgY29kZS4gCgpUcnkgZXhlY3V0aW5nIHRoaXMgY2h1bmsgYnkgY2xpY2tpbmcgdGhlICpSdW4qIGJ1dHRvbiB3aXRoaW4gdGhlIGNodW5rIG9yIGJ5IHBsYWNpbmcgeW91ciBjdXJzb3IgaW5zaWRlIGl0IGFuZCBwcmVzc2luZyAqQ3RybCtTaGlmdCtFbnRlciouIAoKYGBge3J9CnBsb3QoY2FycykKYGBgCgpBZGQgYSBuZXcgY2h1bmsgYnkgY2xpY2tpbmcgdGhlICpJbnNlcnQgQ2h1bmsqIGJ1dHRvbiBvbiB0aGUgdG9vbGJhciBvciBieSBwcmVzc2luZyAqQ3RybCtBbHQrSSouCgpXaGVuIHlvdSBzYXZlIHRoZSBub3RlYm9vaywgYW4gSFRNTCBmaWxlIGNvbnRhaW5pbmcgdGhlIGNvZGUgYW5kIG91dHB1dCB3aWxsIGJlIHNhdmVkIGFsb25nc2lkZSBpdCAoY2xpY2sgdGhlICpQcmV2aWV3KiBidXR0b24gb3IgcHJlc3MgKkN0cmwrU2hpZnQrSyogdG8gcHJldmlldyB0aGUgSFRNTCBmaWxlKS4KClRoZSBwcmV2aWV3IHNob3dzIHlvdSBhIHJlbmRlcmVkIEhUTUwgY29weSBvZiB0aGUgY29udGVudHMgb2YgdGhlIGVkaXRvci4gQ29uc2VxdWVudGx5LCB1bmxpa2UgKktuaXQqLCAqUHJldmlldyogZG9lcyBub3QgcnVuIGFueSBSIGNvZGUgY2h1bmtzLiBJbnN0ZWFkLCB0aGUgb3V0cHV0IG9mIHRoZSBjaHVuayB3aGVuIGl0IHdhcyBsYXN0IHJ1biBpbiB0aGUgZWRpdG9yIGlzIGRpc3BsYXllZC4K