data <- read_excel("myData.xlsx")
data
## # A tibble: 236 × 20
## TEAMID TEAM PAKE PAKERANK PASE PASERANK GAMES W L WINPERCENT R64
## <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 Abil… 0.7 45 0.7 52 3 1 2 0.333 2
## 2 2 Akron -0.9 179 -1.1 187 4 0 4 0 4
## 3 3 Alab… -2.1 211 -2.9 220 10 5 5 0.5 5
## 4 4 Alba… -0.4 147 -0.3 138 3 0 3 0 3
## 5 6 Amer… -0.5 160 -0.4 150 3 0 3 0 3
## 6 8 Ariz… -1.7 206 -2.5 216 28 17 11 0.607 11
## 7 9 Ariz… -2 209 -1.9 206 5 1 4 0.2 4
## 8 10 Arka… 4.3 11 3.5 16 18 11 7 0.611 7
## 9 11 Arka… 0 76 0 78 1 0 1 0 1
## 10 12 Aubu… 0.6 53 1.4 30 11 7 4 0.636 4
## # ℹ 226 more rows
## # ℹ 9 more variables: R32 <dbl>, S16 <dbl>, E8 <dbl>, F4 <dbl>, F2 <dbl>,
## # CHAMP <dbl>, `2` <dbl>, F4PERCENT <dbl>, CHAMPPERCENT <dbl>
Unordered factor levels
# Transform data: calculate average tv hours by religion
data_by_pake <- data %>%
group_by(PAKE) %>%
summarise(
avg_PAKE = mean(PAKE, na.rm = TRUE)
)
data_by_pake
## # A tibble: 75 × 2
## PAKE avg_PAKE
## <dbl> <dbl>
## 1 -6.7 -6.7
## 2 -6.2 -6.2
## 3 -5.5 -5.5
## 4 -4.4 -4.4
## 5 -4.2 -4.2
## 6 -4.1 -4.1
## 7 -3.6 -3.6
## 8 -3.5 -3.5
## 9 -3.4 -3.4
## 10 -3.3 -3.3
## # ℹ 65 more rows
# Plot
data %>%
ggplot(aes((x = avg_PAKE = mean(PAKE, na.rm = TRUE)), y = TEAM)) +
geom_point()
Ordered factor levels
data %>%
ggplot(aes(x = PAKE, y = fct_reorder(.f = TEAM, .x = PAKE))) +
geom_point() +
# Labeling
labs(y = NULL, x = "Mean PAKE")
Show examples of three functions:
data_small <- data %>%
select(TEAM, PAKE, PAKERANK)
data %>%
transmute(PAKE) %>%
ggplot(aes(x = PAKE, y = 1))
No need to do anything here.