#Problem 1- describing the datset and choosing variables
data<- read.csv
View(mtcars)
data<-mtcars
class(data)
## [1] "data.frame"
str(data)
## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
## $ am : num 1 1 1 0 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
#Problem 2-Static visualization of ggplot 2 using parametres
library("ggplot2")
ggplot(data = data)+
geom_point(mapping=aes(x=wt, y=mpg, alpha=wt),col="Red")
ggplot(data=data)+
geom_point(aes(x=wt,y=mpg,col=hp))
N<-ggplot(mtcars, aes(x=wt, y=mpg))
N + geom_point()
# a regression line
N +
geom_point() +
geom_smooth(method="lm", col="Red") +
ggtitle("weight Vs Miles per gallon",
subtitle="From Mtcars Data") +
xlab("wt") + ylab("mpg")
## `geom_smooth()` using formula = 'y ~ x'
#the regression line shows a negative correlation between the weight of
cars and miles per gallon.This negative correlation between weight and
mpg is expected since heavier cars generally consume more fuel
#Problem 3- Creating an interactive chart using plotly
library(ggplot2)
library(plotly)
## Warning: package 'plotly' was built under R version 4.4.3
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
gg <- ggplot(mtcars, aes(x=wt, y=mpg)) +
geom_point(aes(col=cyl), size=1.5) +
geom_smooth(method="scatter", col="Steelblue") +
coord_cartesian(xlim=c(0, 8), ylim=c(0, 50)) +
labs(title="Interactive Scatter plot of Weight Vs Mpg", subtitle="From mtcars dataset", y="mpg", x="wt",
caption="Mtcars Demographics")
gg
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Computation failed in `stat_smooth()`.
## Caused by error in `get()`:
## ! object 'scatter' of mode 'function' was not found
library(plotly)
ggplotly(gg)
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Computation failed in `stat_smooth()`.
## Caused by error in `get()`:
## ! object 'scatter' of mode 'function' was not found
#The interactive scatter plot visualizes the relationship between weight of cars and miles per gallon (mpg) in the mtcars dataset. The color of each point corresponds to the number of cylinders in the car. we have weight of cars in the x axis and mpg in the y axis. As the weight of the car increases, the miles per gallon tends to decrease. This negative correlation between weight and mpg is expected since heavier cars generally consume more fuel.on the other hand, Cars with fewer cylinders (indicated by different colors in the legend) tend to have higher miles per gallon compared to cars with more cylinders. This trend is evident as the colors shift from light blue (fewer cylinders) to dark blue (more cylinders).
#problem 4- creating an animation using gganimate
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ lubridate 1.9.4 ✔ tibble 3.2.1
## ✔ purrr 1.0.4 ✔ tidyr 1.3.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks plotly::filter(), stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(gganimate)
## Warning: package 'gganimate' was built under R version 4.4.3
mtcars
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
cars<-mtcars %>%
ggplot(aes(wt, cyl, color=mpg)) +
geom_point() +
labs(title = 'cyl: {frame_time}', x = 'wt', y = 'mpg') +
transition_time(cyl) +
ease_aes('linear')+
theme_minimal()
cars
###Saving your animation
anim_save("car_Weights_over_cylinder.gif", cars)
#For a video
a <- animate(cars, fps=5, renderer = av_renderer())
anim_save("Car_Weights_over_mpg.mp4", a, path = 'C:/Rwork' )