- Chapter 26 of Introduction to Algorithms (3rd Edition), Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
November 3, 2015
Flow conservation: \(\forall u \in V - \{s, t\}\), we require:
If \((u, v) \notin E\), there can't be flow from \(u\) to \(v\), then \(f(u, v) = 0\).
\(f_p(u, v) = \begin{cases} c_f(p) &\mbox{if } (u, v) \in p\\ -c_f(p) &\mbox {if } (v, u) \in p\\ 0 &\mbox{any other way}\\ \end{cases}\)
- Then \(f_p\) is a flow in \(G_f\) with value \(|f_p| = c_f(p) > 0\)