#Chapter 15 Factors

gss_cat
## # A tibble: 21,483 × 9
##     year marital         age race  rincome        partyid    relig denom tvhours
##    <int> <fct>         <int> <fct> <fct>          <fct>      <fct> <fct>   <int>
##  1  2000 Never married    26 White $8000 to 9999  Ind,near … Prot… Sout…      12
##  2  2000 Divorced         48 White $8000 to 9999  Not str r… Prot… Bapt…      NA
##  3  2000 Widowed          67 White Not applicable Independe… Prot… No d…       2
##  4  2000 Never married    39 White Not applicable Ind,near … Orth… Not …       4
##  5  2000 Divorced         25 White Not applicable Not str d… None  Not …       1
##  6  2000 Married          25 White $20000 - 24999 Strong de… Prot… Sout…      NA
##  7  2000 Never married    36 White $25000 or more Not str r… Chri… Not …       3
##  8  2000 Divorced         44 White $7000 to 7999  Ind,near … Prot… Luth…      NA
##  9  2000 Married          44 White $25000 or more Not str d… Prot… Other       0
## 10  2000 Married          47 White $25000 or more Strong re… Prot… Sout…       3
## # ℹ 21,473 more rows

##modifying factor order unordered factor levels

# Transform data: calculate average tv hours by religion
tvhours_by_relig <- gss_cat %>%
    
    group_by(relig) %>%
    summarise(
        avg_tvhours =mean(tvhours, na.rm = TRUE)
    )
tvhours_by_relig
## # A tibble: 15 × 2
##    relig                   avg_tvhours
##    <fct>                         <dbl>
##  1 No answer                      2.72
##  2 Don't know                     4.62
##  3 Inter-nondenominational        2.87
##  4 Native american                3.46
##  5 Christian                      2.79
##  6 Orthodox-christian             2.42
##  7 Moslem/islam                   2.44
##  8 Other eastern                  1.67
##  9 Hinduism                       1.89
## 10 Buddhism                       2.38
## 11 Other                          2.73
## 12 None                           2.71
## 13 Jewish                         2.52
## 14 Catholic                       2.96
## 15 Protestant                     3.15
#plot
tvhours_by_relig %>%
    
    ggplot(aes(x = avg_tvhours, y = relig)) +
    geom_point()

ordered factor levels

tvhours_by_relig %>%
    
    ggplot(aes(x = avg_tvhours, y = fct_reorder(.f = relig, .x = avg_tvhours))) +
    geom_point() +
    #labeling
    labs(y = NULL, x = "Mean daily hours watching TV")

Moving a single level to the front

tvhours_by_relig %>%
    
    ggplot(aes(x = avg_tvhours, 
               y = fct_reorder(.f = relig, .x = avg_tvhours) %>%
                   fct_relevel("Don't Know"))) +
    geom_point() +
    #labeling
    labs(y = NULL, x = "Mean daily hours watching TV")
## Warning: 1 unknown level in `f`: Don't Know

##modifying factor levels

gss_cat %>% distinct(race)
## # A tibble: 3 × 1
##   race 
##   <fct>
## 1 White
## 2 Black
## 3 Other
#Recode
gss_cat %>%
    
    #rename levels
    mutate(race_rev = fct_recode(race,"African American" ="Black")) %>%
    select(race, race_rev) %>%
    filter(race == "Black")
## # A tibble: 3,129 × 2
##    race  race_rev        
##    <fct> <fct>           
##  1 Black African American
##  2 Black African American
##  3 Black African American
##  4 Black African American
##  5 Black African American
##  6 Black African American
##  7 Black African American
##  8 Black African American
##  9 Black African American
## 10 Black African American
## # ℹ 3,119 more rows
#collapse multiple levels into one
gss_cat %>%
    mutate(race_col = fct_collapse(race, "Minority" = c("Black", "Other"))) %>%
    select(race, race_col) %>%
    filter(race != "White")
## # A tibble: 5,088 × 2
##    race  race_col
##    <fct> <fct>   
##  1 Black Minority
##  2 Black Minority
##  3 Black Minority
##  4 Other Minority
##  5 Black Minority
##  6 Other Minority
##  7 Black Minority
##  8 Other Minority
##  9 Black Minority
## 10 Black Minority
## # ℹ 5,078 more rows
#lump small levels into other levels
gss_cat %>% count(race)
## # A tibble: 3 × 2
##   race      n
##   <fct> <int>
## 1 Other  1959
## 2 Black  3129
## 3 White 16395
gss_cat %>% mutate(race_lump = fct_lump(race)) %>% distinct (race_lump)
## # A tibble: 2 × 1
##   race_lump
##   <fct>    
## 1 White    
## 2 Other

#Chapter 16 Dates and Times ##creating date/times

##from strings

#From strings
"2022-10-28" %>% ymd()
## [1] "2022-10-28"
#from numbers
20221028 %>% ymd()
## [1] "2022-10-28"
"2022-10-28 4-41-30" %>% ymd_hms()
## [1] "2022-10-28 04:41:30 UTC"

##from individual components

flights %>%
    select(year:day, hour, minute) %>%
    mutate(departure = make_datetime(year = year, month = month, 
                                 day= day, hour = hour, min = minute))
## # A tibble: 336,776 × 6
##     year month   day  hour minute departure          
##    <int> <int> <int> <dbl>  <dbl> <dttm>             
##  1  2013     1     1     5     15 2013-01-01 05:15:00
##  2  2013     1     1     5     29 2013-01-01 05:29:00
##  3  2013     1     1     5     40 2013-01-01 05:40:00
##  4  2013     1     1     5     45 2013-01-01 05:45:00
##  5  2013     1     1     6      0 2013-01-01 06:00:00
##  6  2013     1     1     5     58 2013-01-01 05:58:00
##  7  2013     1     1     6      0 2013-01-01 06:00:00
##  8  2013     1     1     6      0 2013-01-01 06:00:00
##  9  2013     1     1     6      0 2013-01-01 06:00:00
## 10  2013     1     1     6      0 2013-01-01 06:00:00
## # ℹ 336,766 more rows

##from other types

# from date to date-time
today() %>% as_datetime()
## [1] "2025-04-09 UTC"
#from date-time to date
now() %>% as_date()
## [1] "2025-04-09"

date time components

##gettings components

date_time <-("2022-10-28 18-18-18")
date_time
## [1] "2022-10-28 18-18-18"
year(date_time)
## [1] 2022
month(date_time, label = TRUE, abbr = FALSE)
## [1] October
## 12 Levels: January < February < March < April < May < June < ... < December
yday(date_time)
## [1] 301
mday(date_time)
## [1] 28
wday(date_time, label = TRUE, abbr = FALSE)
## [1] Friday
## 7 Levels: Sunday < Monday < Tuesday < Wednesday < Thursday < ... < Saturday
make_datetime_100 <- function(year, month, day, time) {
  make_datetime(year, month, day, time %/% 100, time %% 100)
}

flights_dt <- flights %>% 
  filter(!is.na(dep_time), !is.na(arr_time)) %>% 
  mutate(
    dep_time = make_datetime_100(year, month, day, dep_time),
    arr_time = make_datetime_100(year, month, day, arr_time),
    sched_dep_time = make_datetime_100(year, month, day, sched_dep_time),
    sched_arr_time = make_datetime_100(year, month, day, sched_arr_time)
  ) %>% 
  select(origin, dest, ends_with("delay"), ends_with("time"))

flights_dt %>%
    transmute(wday = wday(dep_time, label = TRUE)) %>%
    
    ggplot(aes(wday)) +
    geom_bar()

###rounding

#floor date for rounding down
flights_dt %>%
    
    mutate(week = floor_date(dep_time, "month")) %>%
    select(dep_time, week) %>%
    sample_n(10)
## # A tibble: 10 × 2
##    dep_time            week               
##    <dttm>              <dttm>             
##  1 2013-11-08 14:51:00 2013-11-01 00:00:00
##  2 2013-03-31 20:22:00 2013-03-01 00:00:00
##  3 2013-10-16 12:50:00 2013-10-01 00:00:00
##  4 2013-04-28 16:57:00 2013-04-01 00:00:00
##  5 2013-04-18 09:58:00 2013-04-01 00:00:00
##  6 2013-01-13 09:11:00 2013-01-01 00:00:00
##  7 2013-07-31 09:29:00 2013-07-01 00:00:00
##  8 2013-03-01 08:37:00 2013-03-01 00:00:00
##  9 2013-06-03 09:54:00 2013-06-01 00:00:00
## 10 2013-07-03 18:22:00 2013-07-01 00:00:00
#ceiling_date for rounding up
flights_dt %>%
    
    mutate(week = ceiling_date(dep_time, "week")) %>%
    select(dep_time, week) %>%
    sample_n(10)
## # A tibble: 10 × 2
##    dep_time            week               
##    <dttm>              <dttm>             
##  1 2013-01-22 19:48:00 2013-01-27 00:00:00
##  2 2013-10-31 07:51:00 2013-11-03 00:00:00
##  3 2013-08-13 16:06:00 2013-08-18 00:00:00
##  4 2013-01-25 08:40:00 2013-01-27 00:00:00
##  5 2013-07-15 08:12:00 2013-07-21 00:00:00
##  6 2013-09-07 14:55:00 2013-09-08 00:00:00
##  7 2013-08-14 05:42:00 2013-08-18 00:00:00
##  8 2013-12-08 19:18:00 2013-12-15 00:00:00
##  9 2013-03-08 11:43:00 2013-03-10 00:00:00
## 10 2013-08-03 10:10:00 2013-08-04 00:00:00

##setting components

flights_dt %>%
    mutate(dep_hour = update(dep_time, yday = 1)) %>%
    select(dep_time, dep_hour) %>%
    sample_n(10)
## # A tibble: 10 × 2
##    dep_time            dep_hour           
##    <dttm>              <dttm>             
##  1 2013-02-02 14:51:00 2013-01-01 14:51:00
##  2 2013-09-19 14:49:00 2013-01-01 14:49:00
##  3 2013-09-08 06:54:00 2013-01-01 06:54:00
##  4 2013-11-27 13:40:00 2013-01-01 13:40:00
##  5 2013-11-15 21:06:00 2013-01-01 21:06:00
##  6 2013-10-09 21:00:00 2013-01-01 21:00:00
##  7 2013-06-15 06:55:00 2013-01-01 06:55:00
##  8 2013-03-19 20:18:00 2013-01-01 20:18:00
##  9 2013-03-29 21:33:00 2013-01-01 21:33:00
## 10 2013-03-25 05:51:00 2013-01-01 05:51:00

##time spans