# Load package
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(nycflights13)
library(lubridate)
By religion
#unordered
tvhours_by_relig <- gss_cat %>%
group_by(relig) %>%
summarise(
avg_tvhours = mean(tvhours, na.rm = TRUE)
)
tvhours_by_relig
## # A tibble: 15 × 2
## relig avg_tvhours
## <fct> <dbl>
## 1 No answer 2.72
## 2 Don't know 4.62
## 3 Inter-nondenominational 2.87
## 4 Native american 3.46
## 5 Christian 2.79
## 6 Orthodox-christian 2.42
## 7 Moslem/islam 2.44
## 8 Other eastern 1.67
## 9 Hinduism 1.89
## 10 Buddhism 2.38
## 11 Other 2.73
## 12 None 2.71
## 13 Jewish 2.52
## 14 Catholic 2.96
## 15 Protestant 3.15
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours, y = relig)) +
geom_point()
#ordered
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours, y = fct_reorder(.f = relig, .x = avg_tvhours))) +
geom_point() +
#label
labs(y = NULL, x = "Mean Daily Hours Watching TV")
By age
rincome_by_age <- gss_cat %>%
group_by(rincome) %>%
summarise(
avg_age = mean(age, na.rm = TRUE)
)
rincome_by_age %>%
ggplot(aes(x = avg_age, y = fct_reorder(.f = rincome, .x = avg_age))) +
geom_point() +
#label
labs(y = NULL, x = "Age")
ggplot(rincome_by_age, aes(avg_age, fct_relevel(rincome, "Not applicable"))) +
geom_point()
gss_cat %>%
mutate(partyid = fct_recode(partyid,
"Republican, strong" = "Strong republican",
"Republican, weak" = "Not str republican",
"Independent, near rep" = "Ind,near rep",
"Independent, near dem" = "Ind,near dem",
"Democrat, weak" = "Not str democrat",
"Democrat, strong" = "Strong democrat",
"Other" = "No answer",
"Other" = "Don't know",
"Other" = "Other party"
))
## # A tibble: 21,483 × 9
## year marital age race rincome partyid relig denom tvhours
## <int> <fct> <int> <fct> <fct> <fct> <fct> <fct> <int>
## 1 2000 Never married 26 White $8000 to 9999 Independe… Prot… Sout… 12
## 2 2000 Divorced 48 White $8000 to 9999 Republica… Prot… Bapt… NA
## 3 2000 Widowed 67 White Not applicable Independe… Prot… No d… 2
## 4 2000 Never married 39 White Not applicable Independe… Orth… Not … 4
## 5 2000 Divorced 25 White Not applicable Democrat,… None Not … 1
## 6 2000 Married 25 White $20000 - 24999 Democrat,… Prot… Sout… NA
## 7 2000 Never married 36 White $25000 or more Republica… Chri… Not … 3
## 8 2000 Divorced 44 White $7000 to 7999 Independe… Prot… Luth… NA
## 9 2000 Married 44 White $25000 or more Democrat,… Prot… Other 0
## 10 2000 Married 47 White $25000 or more Republica… Prot… Sout… 3
## # ℹ 21,473 more rows
gss_cat %>%
mutate(partyid = fct_collapse(partyid,
other = c("No answer", "Don't know", "Other party"),
rep = c("Strong republican", "Not str republican"),
ind = c("Ind,near rep", "Independent", "Ind,near dem"),
dem = c("Not str democrat", "Strong democrat")
)) %>%
count(partyid)
## # A tibble: 4 × 2
## partyid n
## <fct> <int>
## 1 other 548
## 2 rep 5346
## 3 ind 8409
## 4 dem 7180
gss_cat %>%
mutate(relig = fct_lump(relig, n = 10)) %>%
count(relig, sort = TRUE) %>%
print(n = Inf)
## # A tibble: 10 × 2
## relig n
## <fct> <int>
## 1 Protestant 10846
## 2 Catholic 5124
## 3 None 3523
## 4 Christian 689
## 5 Other 458
## 6 Jewish 388
## 7 Buddhism 147
## 8 Inter-nondenominational 109
## 9 Moslem/islam 104
## 10 Orthodox-christian 95
#from strings
"2025-04-09" %>% ymd()
## [1] "2025-04-09"
"2025-04-09 5-52-12" %>% ymd_hms()
## [1] "2025-04-09 05:52:12 UTC"
#from numbers
20250409 %>% ymd()
## [1] "2025-04-09"
flights %>%
select(year:day, hour, minute) %>%
mutate(departure = make_datetime(year = year, month = month, day = day, hour = hour, min = minute))
## # A tibble: 336,776 × 6
## year month day hour minute departure
## <int> <int> <int> <dbl> <dbl> <dttm>
## 1 2013 1 1 5 15 2013-01-01 05:15:00
## 2 2013 1 1 5 29 2013-01-01 05:29:00
## 3 2013 1 1 5 40 2013-01-01 05:40:00
## 4 2013 1 1 5 45 2013-01-01 05:45:00
## 5 2013 1 1 6 0 2013-01-01 06:00:00
## 6 2013 1 1 5 58 2013-01-01 05:58:00
## 7 2013 1 1 6 0 2013-01-01 06:00:00
## 8 2013 1 1 6 0 2013-01-01 06:00:00
## 9 2013 1 1 6 0 2013-01-01 06:00:00
## 10 2013 1 1 6 0 2013-01-01 06:00:00
## # ℹ 336,766 more rows
today() %>% as_datetime()
## [1] "2025-04-09 UTC"
now() %>% as_date
## [1] "2025-04-09"
date_time <- ymd_hms("2025-04-09 18-05-00")
date_time
## [1] "2025-04-09 18:05:00 UTC"
year(date_time)
## [1] 2025
yday(date_time)
## [1] 99
mday(date_time)
## [1] 9
wday(date_time)
## [1] 4
make_datetime_100 <- function(year, month, day, time) {
make_datetime(year, month, day, time %/% 100, time %% 100)
}
flights_dt <- flights %>%
filter(!is.na(dep_time), !is.na(arr_time)) %>%
mutate(
dep_time = make_datetime_100(year, month, day, dep_time),
arr_time = make_datetime_100(year, month, day, arr_time),
sched_dep_time = make_datetime_100(year, month, day, sched_dep_time),
sched_arr_time = make_datetime_100(year, month, day, sched_arr_time)
) %>%
select(origin, dest, ends_with("delay"), ends_with("time"))
flights_dt %>%
transmute(wday = wday(dep_time, label = TRUE)) %>%
ggplot(aes(wday)) +
geom_bar()
flights_dt %>%
mutate(week = floor_date(dep_time, "day")) %>%
select(dep_time, week)
## # A tibble: 328,063 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-01-01 05:17:00 2013-01-01 00:00:00
## 2 2013-01-01 05:33:00 2013-01-01 00:00:00
## 3 2013-01-01 05:42:00 2013-01-01 00:00:00
## 4 2013-01-01 05:44:00 2013-01-01 00:00:00
## 5 2013-01-01 05:54:00 2013-01-01 00:00:00
## 6 2013-01-01 05:54:00 2013-01-01 00:00:00
## 7 2013-01-01 05:55:00 2013-01-01 00:00:00
## 8 2013-01-01 05:57:00 2013-01-01 00:00:00
## 9 2013-01-01 05:57:00 2013-01-01 00:00:00
## 10 2013-01-01 05:58:00 2013-01-01 00:00:00
## # ℹ 328,053 more rows
flights_dt %>%
mutate(week = ceiling_date(dep_time, "month")) %>%
select(dep_time, week)
## # A tibble: 328,063 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-01-01 05:17:00 2013-02-01 00:00:00
## 2 2013-01-01 05:33:00 2013-02-01 00:00:00
## 3 2013-01-01 05:42:00 2013-02-01 00:00:00
## 4 2013-01-01 05:44:00 2013-02-01 00:00:00
## 5 2013-01-01 05:54:00 2013-02-01 00:00:00
## 6 2013-01-01 05:54:00 2013-02-01 00:00:00
## 7 2013-01-01 05:55:00 2013-02-01 00:00:00
## 8 2013-01-01 05:57:00 2013-02-01 00:00:00
## 9 2013-01-01 05:57:00 2013-02-01 00:00:00
## 10 2013-01-01 05:58:00 2013-02-01 00:00:00
## # ℹ 328,053 more rows
flights_dt %>%
mutate(dep_hour = update(dep_time, yday = 1)) %>%
select(dep_time, dep_hour) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time dep_hour
## <dttm> <dttm>
## 1 2013-03-01 11:52:00 2013-01-01 11:52:00
## 2 2013-10-08 16:59:00 2013-01-01 16:59:00
## 3 2013-12-31 22:45:00 2013-01-01 22:45:00
## 4 2013-08-02 07:59:00 2013-01-01 07:59:00
## 5 2013-04-22 06:19:00 2013-01-01 06:19:00
## 6 2013-09-15 20:46:00 2013-01-01 20:46:00
## 7 2013-09-29 09:06:00 2013-01-01 09:06:00
## 8 2013-03-07 16:30:00 2013-01-01 16:30:00
## 9 2013-06-27 06:58:00 2013-01-01 06:58:00
## 10 2013-02-20 16:42:00 2013-01-01 16:42:00