TUGAS PRAKTIKUM ATH-04

library(survival)
library(survminer)
## Loading required package: ggplot2
## Loading required package: ggpubr
## 
## Attaching package: 'survminer'
## The following object is masked from 'package:survival':
## 
##     myeloma
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(car)
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode

1. Input dataset ‘hmohiv.csv’

hmohiv<-read.table("https://stats.idre.ucla.edu/stat/r/examples/asa/hmohiv.csv", sep=",", header = TRUE)
hmohiv$s_obj <- Surv(hmohiv$time, hmohiv$censor)

2. Ubah variabel ‘age’ menjadi variabel kategorik

  • 20-29 : cage_1

  • 30-39 : cage_2

  • 40-49 : cage_3

  • 50-54 : cage_4

hmohiv$cage <- car::recode(hmohiv$age, "20:29='cage_1'; 30:39='cage_2'; 40:49='cage_3'; 50:59='cage_4'", as.factor = TRUE)
hmohiv
##      ID time age drug censor     entdate     enddate s_obj   cage
## 1     1    5  46    0      1  5/15/1990  10/14/1990      5 cage_3
## 2     2    6  35    1      0  9/19/1989   3/20/1990     6+ cage_2
## 3     3    8  30    1      1  4/21/1991  12/20/1991      8 cage_2
## 4     4    3  30    1      1   1/3/1991    4/4/1991      3 cage_2
## 5     5   22  36    0      1  9/18/1989   7/19/1991     22 cage_2
## 6     6    1  32    1      0  3/18/1991   4/17/1991     1+ cage_2
## 7     7    7  36    1      1 11/11/1989   6/11/1990      7 cage_2
## 8     8    9  31    1      1 11/25/1989   8/25/1990      9 cage_2
## 9     9    3  48    0      1  2/11/1991   5/13/1991      3 cage_3
## 10   10   12  47    0      1  8/11/1989   8/11/1990     12 cage_3
## 11   11    2  28    1      0  4/11/1990   6/10/1990     2+ cage_1
## 12   12   12  34    0      1  5/11/1991   5/10/1992     12 cage_2
## 13   13    1  44    1      1  1/17/1989   2/16/1989      1 cage_3
## 14   14   15  32    1      1  2/16/1991   5/17/1992     15 cage_2
## 15   15   34  36    0      1   4/9/1991    2/6/1994     34 cage_2
## 16   16    1  36    0      1   3/9/1991    4/8/1991      1 cage_2
## 17   17    4  54    0      1   8/3/1990   12/2/1990      4 cage_4
## 18   18   19  35    0      0  6/10/1990    1/8/1992    19+ cage_2
## 19   19    3  44    1      0  6/12/1991   9/11/1991     3+ cage_3
## 20   20    2  38    0      1   1/7/1991    3/8/1991      2 cage_2
## 21   21    2  40    0      0  8/29/1989  10/28/1989     2+ cage_3
## 22   22    6  34    1      1  5/29/1989  11/27/1989      6 cage_2
## 23   23   60  25    0      0 11/16/1990  11/14/1995    60+ cage_1
## 24   24   11  32    0      1   5/9/1990    4/8/1991     11 cage_2
## 25   25    2  42    1      0  9/10/1991   11/9/1991     2+ cage_3
## 26   26    5  47    0      1 12/26/1991   5/26/1992      5 cage_3
## 27   27    4  30    0      0  5/29/1991   9/27/1991     4+ cage_2
## 28   28    1  47    1      1   5/1/1990   5/31/1990      1 cage_3
## 29   29   13  41    0      1  3/24/1991   4/22/1992     13 cage_3
## 30   30    3  40    1      1  7/18/1989  10/17/1989      3 cage_3
## 31   31    2  43    0      1  9/16/1990  11/15/1990      2 cage_3
## 32   32    1  41    0      1  6/22/1989   7/22/1989      1 cage_3
## 33   33   30  30    0      1  4/27/1990  10/25/1992     30 cage_2
## 34   34    7  37    0      1  5/16/1990  12/14/1990      7 cage_2
## 35   35    4  42    1      1  2/19/1989   6/20/1989      4 cage_3
## 36   36    8  31    1      1  2/17/1990  10/18/1990      8 cage_2
## 37   37    5  39    1      1   8/6/1991    1/5/1992      5 cage_2
## 38   38   10  32    0      1  8/10/1989   6/10/1990     10 cage_2
## 39   39    2  51    0      1 12/27/1990   2/25/1991      2 cage_4
## 40   40    9  36    0      1  4/26/1989   1/24/1990      9 cage_2
## 41   41   36  43    0      1  12/4/1990   12/3/1993     36 cage_3
## 42   42    3  39    0      1  4/28/1991   7/28/1991      3 cage_2
## 43   43    9  33    0      1   7/9/1991    4/7/1992      9 cage_2
## 44   44    3  45    1      1 12/31/1989    4/1/1990      3 cage_3
## 45   45   35  33    0      1 12/20/1989  11/18/1992     35 cage_2
## 46   46    8  28    0      1  6/22/1991   2/20/1992      8 cage_1
## 47   47   11  31    0      1  4/11/1990   3/11/1991     11 cage_2
## 48   48   56  20    1      0  5/22/1990   1/19/1995    56+ cage_1
## 49   49    2  44    0      0 11/11/1991   1/10/1992     2+ cage_3
## 50   50    3  39    1      1  1/18/1991   4/19/1991      3 cage_2
## 51   51   15  33    0      1 11/11/1989   2/10/1991     15 cage_2
## 52   52    1  31    0      1  10/1/1990  10/31/1990      1 cage_2
## 53   53   10  33    0      1  3/20/1990   1/18/1991     10 cage_2
## 54   54    1  50    1      1  7/30/1990   8/29/1990      1 cage_4
## 55   55    7  36    1      1  7/17/1989   2/14/1990      7 cage_2
## 56   56    3  30    1      1 11/10/1990    2/9/1991      3 cage_2
## 57   57    3  42    1      1   3/5/1989    6/4/1989      3 cage_3
## 58   58    2  32    1      1   3/2/1991    5/1/1991      2 cage_2
## 59   59   32  34    0      1  9/11/1989   5/11/1992     32 cage_2
## 60   60    3  38    1      1  9/12/1989  12/12/1989      3 cage_2
## 61   61   10  33    0      0   4/8/1990    2/6/1991    10+ cage_2
## 62   62   11  39    1      1  4/20/1989   3/20/1990     11 cage_2
## 63   63    3  39    1      1  1/31/1991    5/2/1991      3 cage_2
## 64   64    7  33    1      1  9/15/1989   4/15/1990      7 cage_2
## 65   65    5  34    1      1  12/7/1991    5/7/1992      5 cage_2
## 66   66   31  34    0      1   3/4/1990   10/1/1992     31 cage_2
## 67   67    5  46    1      1  4/20/1989   9/19/1989      5 cage_3
## 68   68   58  22    0      1  6/16/1989   4/15/1994     58 cage_1
## 69   69    1  44    1      1  10/1/1990  10/31/1990      1 cage_3
## 70   70    3  37    0      0   2/1/1991    5/3/1991     3+ cage_2
## 71   71   43  25    0      1  5/13/1989  12/10/1992     43 cage_1
## 72   72    1  38    0      1   8/9/1990    9/8/1990      1 cage_2
## 73   73    6  32    0      1 12/18/1991   6/17/1992      6 cage_2
## 74   74   53  34    0      1  8/23/1990   1/21/1995     53 cage_2
## 75   75   14  29    0      1  1/19/1991   3/19/1992     14 cage_1
## 76   76    4  36    1      1  8/26/1991  12/25/1991      4 cage_2
## 77   77   54  21    0      1  5/16/1991  11/13/1995     54 cage_1
## 78   78    1  26    1      1  3/20/1989   4/19/1989      1 cage_1
## 79   79    1  32    1      1  10/5/1991   11/4/1991      1 cage_2
## 80   80    8  42    0      1  5/21/1991   1/19/1992      8 cage_3
## 81   81    5  40    1      1  6/10/1991   11/9/1991      5 cage_3
## 82   82    1  37    1      1  8/31/1989   9/30/1989      1 cage_2
## 83   83    1  47    0      1 12/28/1991   1/27/1992      1 cage_3
## 84   84    2  32    1      1  9/29/1990  11/28/1990      2 cage_2
## 85   85    7  41    1      0 11/20/1991   6/19/1992     7+ cage_3
## 86   86    1  46    1      0   7/2/1989    8/1/1989     1+ cage_3
## 87   87   10  26    1      1 10/11/1991   8/10/1992     10 cage_1
## 88   88   24  30    0      0 10/11/1990  10/10/1992    24+ cage_2
## 89   89    7  32    1      1  12/5/1990    7/5/1991      7 cage_2
## 90   90   12  31    1      0   9/8/1989    9/8/1990    12+ cage_2
## 91   91    4  35    0      1  4/10/1990    8/9/1990      4 cage_2
## 92   92   57  36    0      1 12/11/1990    9/9/1995     57 cage_2
## 93   93    1  41    1      1 12/15/1990   1/14/1991      1 cage_3
## 94   94   12  36    1      0  1/13/1989   1/13/1990    12+ cage_2
## 95   95    7  35    1      1  8/22/1991   3/21/1992      7 cage_2
## 96   96    1  34    1      1   8/2/1991    9/1/1991      1 cage_2
## 97   97    5  28    0      1  5/22/1991  10/21/1991      5 cage_1
## 98   98   60  29    0      0   4/2/1990    4/1/1995    60+ cage_1
## 99   99    2  35    1      0   5/1/1991   6/30/1991     2+ cage_2
## 100 100    1  34    1      1  5/11/1989   6/10/1989      1 cage_2

3. Buat model Cox PH dengan variabel penjelas drug (ref: drug=1) dan cage (ref: cage_3)

cdrug <- as.factor(hmohiv$drug)  
cdrug <- relevel(cdrug, ref = "1")
hmohiv$cage <- relevel(factor(hmohiv$cage), ref = "cage_3")

# Model Cox PH dengan variabel penjelas 'drug' dan 'age_cat'
coxph_drug_age <- coxph(s_obj ~ cage + cdrug, data=hmohiv,method="breslow")
summary(coxph_drug_age)
## Call:
## coxph(formula = s_obj ~ cage + cdrug, data = hmohiv, method = "breslow")
## 
##   n= 100, number of events= 80 
## 
##               coef exp(coef) se(coef)      z Pr(>|z|)    
## cagecage_1 -1.8771    0.1530   0.4879 -3.847 0.000119 ***
## cagecage_2 -0.5991    0.5493   0.2750 -2.178 0.029385 *  
## cagecage_4  1.2308    3.4239   0.6354  1.937 0.052741 .  
## cdrug0     -0.8711    0.4185   0.2532 -3.440 0.000581 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##            exp(coef) exp(-coef) lower .95 upper .95
## cagecage_1    0.1530     6.5345   0.05882    0.3982
## cagecage_2    0.5493     1.8204   0.32044    0.9417
## cagecage_4    3.4239     0.2921   0.98554   11.8954
## cdrug0        0.4185     2.3895   0.25479    0.6874
## 
## Concordance= 0.685  (se = 0.034 )
## Likelihood ratio test= 33.11  on 4 df,   p=1e-06
## Wald test            = 29.43  on 4 df,   p=6e-06
## Score (logrank) test = 32.93  on 4 df,   p=1e-06

4. Interpretasikan hasilnya!