Program-1

Author

Asmita DV-1NT23IS068-SectionB

Develop an R program to quickly explore a given dataset, including categorical analysis using the group_by command, and visualize the findings using ggplot2 features.

Step 1: Load the necessary Library

library(ggplot2)
library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ lubridate 1.9.4     ✔ tibble    3.2.1
✔ purrr     1.0.4     ✔ tidyr     1.3.1
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Step 2: Load data Set

#Load dataset
data <- mtcars

#Convert 'cyl' toa factor for categorical analysis
data$cyl <- as.factor(data$cyl)

Step 3: Group by categorical variable

#Summarize average mpg by cylinder category
summary_data <- data %>%
  group_by(cyl) %>%
  summarise(avg_mpg = mean(mpg), .groups= 'drop')

#Display summary
print(summary_data)
# A tibble: 3 × 2
  cyl   avg_mpg
  <fct>   <dbl>
1 4        26.7
2 6        19.7
3 8        15.1

Step 4: Visualizing the findings

#Create a bar plot using ggplot2
ggplot(summary_data, aes( x= cyl, y = avg_mpg, fill = cyl))+
  geom_bar(stat = "identity") +
  labs(title = "Average MPG by cylinder count",
       x ="Number of Cylinder",
       y= "Average MPG") +
  theme_minimal()