Develop an R program to quickly explore a given dataset, including categorical analysis using the group_by command, and visualize the findings using ggplot2 features.
Step 1: Load the necessary Library
library(ggplot2)library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.4 ✔ readr 2.1.5
✔ forcats 1.0.0 ✔ stringr 1.5.1
✔ lubridate 1.9.4 ✔ tibble 3.2.1
✔ purrr 1.0.4 ✔ tidyr 1.3.1
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Step 2: Load data Set
#Load datasetdata <- mtcars#Convert 'cyl' toa factor for categorical analysisdata$cyl <-as.factor(data$cyl)
Step 3: Group by categorical variable
#Summarize average mpg by cylinder categorysummary_data <- data %>%group_by(cyl) %>%summarise(avg_mpg =mean(mpg), .groups='drop')#Display summaryprint(summary_data)
#Create a bar plot using ggplot2ggplot(summary_data, aes( x= cyl, y = avg_mpg, fill = cyl))+geom_bar(stat ="identity") +labs(title ="Average MPG by cylinder count",x ="Number of Cylinder",y="Average MPG") +theme_minimal()