Series: ts_data
ARIMA(0,0,1) with non-zero mean
Coefficients:
ma1 mean
0.4495 4.9444
s.e. 0.1203 0.2020
sigma^2 = 0.9269: log likelihood = -61.23
AIC=128.47 AICc=129.05 BIC=133.89
Training set error measures:
ME RMSE MAE MPE MAPE MASE
Training set 0.007253807 0.9411272 0.728869 -4.898082 17.12819 0.7452129
ACF1
Training set 0.01208157
# 手动尝试其他模型(示例)model_ar1 <-Arima(ts_data, order =c(1, 0, 0)) # AR(1)model_ma1 <-Arima(ts_data, order =c(0, 0, 1)) # MA(1)model_arma <-Arima(ts_data, order =c(1, 0, 1)) # ARMA(1,1)# 比较AIC值cat("模型AIC对比:\n")
模型AIC对比:
cat("Auto ARIMA:", AIC(auto_model), "\n")
Auto ARIMA: 128.4692
cat("AR(1):", AIC(model_ar1), "\n")
AR(1): 131.223
cat("MA(1):", AIC(model_ma1), "\n")
MA(1): 128.4692
cat("ARMA(1,1):", AIC(model_arma), "\n")
ARMA(1,1): 130.4451
# 使用最优模型预测forecast_result <-forecast(auto_model, h =5)plot(forecast_result, main ="未来5年人口死亡率预测",xlab ="年份",ylab ="死亡率",col ="darkred", lwd =2)lines(fitted(auto_model), col ="green") # 添加拟合值
# 输出预测数值print(forecast_result)
Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
46 4.842503 3.608670 6.076336 2.955518 6.729488
47 4.944402 3.591665 6.297138 2.875569 7.013234
48 4.944402 3.591665 6.297138 2.875569 7.013234
49 4.944402 3.591665 6.297138 2.875569 7.013234
50 4.944402 3.591665 6.297138 2.875569 7.013234