1 + 1
[1] 2
Quarto enables you to weave together content and executable code into a finished document. To learn more about Quarto see https://quarto.org.
When you click the Render button a document will be generated that includes both content and the output of embedded code. You can embed code like this:
1 + 1
[1] 2
You can add options to executable code like this
[1] 4
The echo: false
option disables the printing of code (only output is displayed).
Develop an r program to quickly explore a given dataset including categorical analysis using the group_by command,and visualize the findings using ggplot2 features.
library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.4 ✔ readr 2.1.5
✔ forcats 1.0.0 ✔ stringr 1.5.1
✔ ggplot2 3.5.1 ✔ tibble 3.2.1
✔ lubridate 1.9.4 ✔ tidyr 1.3.1
✔ purrr 1.0.4
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(dplyr)
#Load dataset
<- mtcars
data
# Convert 'cyl' to a factor for categorical analysis
$cyl <- as.factor(data$cyl) data
# Summarize average mpg by cylinder category
<- data %>%
summary_data group_by(cyl) %>%
summarise(avg_mpg = mean(mpg), .groups = 'drop')
# Display summary
print(summary_data)
# A tibble: 3 × 2
cyl avg_mpg
<fct> <dbl>
1 4 26.7
2 6 19.7
3 8 15.1
# Create a bar plot using ggplot2
ggplot(summary_data, aes(x = cyl, y = avg_mpg, fill = cyl)) +
geom_bar(stat = "identity") +
labs(title = "Average MPG by Cylinder count",
x = "Number of Cylinders",
Y = "Average MPG") +
theme_minimal()
# Load necessary libraries
library(ggplot2)
library(dplyr)
Explanation:
The iris
dataset contains 150 samples of iris flowers categorized into three species: setosa, versicolor, and virginica.
Each sample has sepal and petal measurements.
head(data)
displays the first few rows.
# Load the iris dataset
<- iris
data
# Display first few rows
head(data)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
X-Axis (Sepal.Length
)
Y-Axis (Sepal.Width
)
Color (Species
)
Customization
geom_point(size = 3, alpha = 0.7)
: Increases the size of points and makes them slightly transparent.
labs()
: Adds a title and axis labels.
theme_minimal()
: Uses a clean background for readability
theme(legend.position = "top")
: Moves the legend to the top.
# Create a scatter plot using ggplot2
ggplot(data, aes(x = Sepal.Length, y = Sepal.Width, color = Species)) +
geom_point(size = 3, alpha = 0.7) + # Increase point size & transparency
labs(title = "Scatter Plot of Sepal Dimensions",
x = "Sepal Length",
y = "Sepal Width",
color = "Species") + # Legend title
theme_minimal() + # Clean layout
theme(legend.position = "top") # Move legend to the top
Implement an R function to generate a line graph depicting the trend of a time-series dataset, with separate lines for each group, utilizing ggplot2’s group aesthetic.
This document demonstrates how to create a time-series line graph using the built-in AirPassengers
dataset in R.
The dataset contains monthly airline passenger counts from 1949 to 1960. We will use ggplot2 to visualize trends, with separate lines for each year.
library(ggplot2)
library(dplyr)
library(tidyr)
AirPassengers
DatasetThe AirPassengers
dataset is a time series object in R.
We first convert it into a dataframe to use it with ggplot2
.
Date: Represents the month and year (from January 1949 to December 1960).
Passengers: Monthly airline passenger counts.
Year: Extracted year from the date column, which will be used to group the data
# Convert time-series data to a dataframe
<- data.frame(
data Date = seq(as.Date("1949-01-01"), by = "month", length.out = length(AirPassengers)),
Passengers = as.numeric(AirPassengers),
Year = as.factor(format(seq(as.Date("1949-01-01"), by = "month", length.out = length(AirPassengers)), "%Y"))
)
# Display first few rows
head(data, n=20)
Date Passengers Year
1 1949-01-01 112 1949
2 1949-02-01 118 1949
3 1949-03-01 132 1949
4 1949-04-01 129 1949
5 1949-05-01 121 1949
6 1949-06-01 135 1949
7 1949-07-01 148 1949
8 1949-08-01 148 1949
9 1949-09-01 136 1949
10 1949-10-01 119 1949
11 1949-11-01 104 1949
12 1949-12-01 118 1949
13 1950-01-01 115 1950
14 1950-02-01 126 1950
15 1950-03-01 141 1950
16 1950-04-01 135 1950
17 1950-05-01 125 1950
18 1950-06-01 149 1950
19 1950-07-01 170 1950
20 1950-08-01 170 1950
We define a function to create a time-series line graph where:
The x-axis represents time (Date).
The y-axis represents the number of passengers (Passengers).
Each year has a separate line to compare trends.
Function Inputs
data – The dataset containing time-series data.
x_col – The column representing time (Date).
y_col – The column representing values (Passengers).
group_col – The categorical variable for grouping (Year).
title – Custom plot title.
Features of the Line Graph
Each year has a distinct line color.
The group aesthetic ensures lines are drawn separately for each year.
Enhances readability with a clean layout.
Moves legend to the top for better visualization.
# Function to plot time-series trend
<- function(data, x_col, y_col, group_col, title="Air Passenger Trends") {
plot_time_series ggplot(data, aes_string(x = x_col, y = y_col, color = group_col, group = group_col)) +
geom_line(size = 1.2) + # Line graph
geom_point(size = 2) + # Add points for clarity
labs(title = title,
x = "Year",
y = "Number of Passengers",
color = "Year") + # Legend title
theme_minimal() +
theme(legend.position = "top")
}
# Call the function
plot_time_series(data, "Date", "Passengers", "Year", "Trend of Airline Passengers Over Time")
Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
ℹ Please use tidy evaluation idioms with `aes()`.
ℹ See also `vignette("ggplot2-in-packages")` for more information.
Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.
Develop a script in R to produce a bar graph displaying the frequency distribution of categorical data in a given dataset, grouped by a specific variable, using ggplot2.
# Load necessary libraries
library(ggplot2)
We use the built-in mtcars
dataset, which contains information about different car models.
# Load dataset
<- mtcars
data
# Display first few rows
head(data)
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
The mtcars
dataset includes various car specifications.
We will analyze the number of cylinders (cyl
) and group by the number of gears (gear
).
Since cyl
(number of cylinders) and gear
(number of gears) are numerical, we convert them into factors.
$cyl <- as.factor(data$cyl)
data$gear <- as.factor(data$gear) data
ggplot2
treats factors as categories, making it easy to group and visualize.We now create a bar plot to show the frequency distribution of cyl
, grouped by gear
.
# Create a bar graph
ggplot(data, aes(x = cyl, fill = gear)) +
geom_bar(position = "dodge") + # Grouped bar chart
labs(title = "Frequency of Cylinders Grouped by Gear Type",
x = "Number of Cylinders",
y = "Count",
fill = "Gears") + # Legend title
theme_minimal()
X-Axis (cyl
)
Y-Axis (Frequency Count)
Color Fill (gear
)
Grouped Bars (position = "dodge"
)
Minimal Theme (theme_minimal()
)
Implement an R program to create a histogram illustrating the distribution of a continuous variable, with overlays of density curves for each group, using ggplot2.
library(ggplot2)
# Use the built-in 'iris' dataset
# 'Petal.Length' is a continuous variable
# 'Species' is a categorical grouping variable
str(iris) # Shows the structure of the dataset
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
# Start ggplot with iris dataset
# Map Petal.Length to x-axis and fill by Species (grouping variable)
<- ggplot(data = iris, aes(x = Petal.Length, fill = Species))
p p
Explanation:
This initializes the plot and tells ggplot to map:
Petal.Length
(continuous variable) to the x-axis
Species
(categorical) to fill
aesthetic to distinguish groups
# Add histogram with density scaling
<- p + geom_histogram(aes(y = ..density..),
p alpha = 0.4, # Set transparency
position = "identity",# Overlap histograms
bins = 30) # Number of bins
p
Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
ℹ Please use `after_stat(density)` instead.
aes(y = ..density..)
normalizes the histogram to density
alpha = 0.4
makes bars semi-transparent so overlaps are visible
position = "identity"
lets different group histograms stack on top
bins = 30
controls histogram resolution
# Overlay density curves for each group
<- p +
p geom_density(aes(color = Species), # Line color by group
size = 1.2)# Line thickness
p
Explanation: This overlays smooth density curves for each species using color. The aes(color = Species)
ensures each curve is colored by group.
# Add title and axis labels, and apply clean theme
<- p + labs(
p title = "Distribution of Petal Length with Group-wise Density Curves",
x = "Petal Length",
y = "Density")+
theme_minimal()
p
Explanation:
labs()
adds a title and axis labels
theme_minimal()
applies a clean, modern plot style
# Finally, render the plot
p
Write an R script to construct a box plot showcasing the distribution of a continuous variable, grouped by a categorical variable, using ggplot2’s fill aesthetic.
# Load ggplot2 package for visualization
library(ggplot2)
# Use the built-in 'iris' dataset
# 'Petal.Width' is a continuous variable
# 'Species' is a categorical grouping variable
str(iris) # View structure of the dataset
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
head(iris) # View sample data
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
# Initialize ggplot with data and aesthetic mappings
<- ggplot(data = iris, aes(x = Species, y = Petal.Width, fill = Species)) p
# Add the box plot layer
<- p + geom_boxplot() p
# Add title and labels and use a minimal theme
<- p + labs(title = "Box Plot of Petal Width by Species",
p x = "Species",
y = "Petal Width") +
theme_minimal()
# Render the final plot
p
library(ggplot2)
<-seq(-2*pi,2*pi,length.out= 500)
x
<-sin(x)
y1<-cos(x)
y2<- data.frame(x=rep(x,2),
dfy=c(y1,y2),
group= rep(c("sin(x)","cos(x)"),each =length(x))
) df
x y group
1 -6.28318531 2.449213e-16 sin(x)
2 -6.25800220 2.518045e-02 sin(x)
3 -6.23281909 5.034492e-02 sin(x)
4 -6.20763598 7.547747e-02 sin(x)
5 -6.18245288 1.005622e-01 sin(x)
6 -6.15726977 1.255831e-01 sin(x)
7 -6.13208666 1.505244e-01 sin(x)
8 -6.10690356 1.753702e-01 sin(x)
9 -6.08172045 2.001048e-01 sin(x)
10 -6.05653734 2.247125e-01 sin(x)
11 -6.03135423 2.491777e-01 sin(x)
12 -6.00617113 2.734849e-01 sin(x)
13 -5.98098802 2.976186e-01 sin(x)
14 -5.95580491 3.215637e-01 sin(x)
15 -5.93062180 3.453048e-01 sin(x)
16 -5.90543870 3.688269e-01 sin(x)
17 -5.88025559 3.921151e-01 sin(x)
18 -5.85507248 4.151547e-01 sin(x)
19 -5.82988937 4.379310e-01 sin(x)
20 -5.80470627 4.604296e-01 sin(x)
21 -5.77952316 4.826362e-01 sin(x)
22 -5.75434005 5.045367e-01 sin(x)
23 -5.72915694 5.261173e-01 sin(x)
24 -5.70397384 5.473642e-01 sin(x)
25 -5.67879073 5.682640e-01 sin(x)
26 -5.65360762 5.888035e-01 sin(x)
27 -5.62842451 6.089695e-01 sin(x)
28 -5.60324141 6.287494e-01 sin(x)
29 -5.57805830 6.481306e-01 sin(x)
30 -5.55287519 6.671007e-01 sin(x)
31 -5.52769208 6.856478e-01 sin(x)
32 -5.50250898 7.037601e-01 sin(x)
33 -5.47732587 7.214261e-01 sin(x)
34 -5.45214276 7.386346e-01 sin(x)
35 -5.42695965 7.553746e-01 sin(x)
36 -5.40177655 7.716357e-01 sin(x)
37 -5.37659344 7.874074e-01 sin(x)
38 -5.35141033 8.026798e-01 sin(x)
39 -5.32622722 8.174432e-01 sin(x)
40 -5.30104412 8.316882e-01 sin(x)
41 -5.27586101 8.454057e-01 sin(x)
42 -5.25067790 8.585872e-01 sin(x)
43 -5.22549479 8.712241e-01 sin(x)
44 -5.20031169 8.833086e-01 sin(x)
45 -5.17512858 8.948329e-01 sin(x)
46 -5.14994547 9.057897e-01 sin(x)
47 -5.12476236 9.161722e-01 sin(x)
48 -5.09957926 9.259736e-01 sin(x)
49 -5.07439615 9.351879e-01 sin(x)
50 -5.04921304 9.438090e-01 sin(x)
51 -5.02402993 9.518317e-01 sin(x)
52 -4.99884683 9.592507e-01 sin(x)
53 -4.97366372 9.660615e-01 sin(x)
54 -4.94848061 9.722596e-01 sin(x)
55 -4.92329751 9.778411e-01 sin(x)
56 -4.89811440 9.828026e-01 sin(x)
57 -4.87293129 9.871407e-01 sin(x)
58 -4.84774818 9.908529e-01 sin(x)
59 -4.82256508 9.939368e-01 sin(x)
60 -4.79738197 9.963903e-01 sin(x)
61 -4.77219886 9.982119e-01 sin(x)
62 -4.74701575 9.994006e-01 sin(x)
63 -4.72183265 9.999554e-01 sin(x)
64 -4.69664954 9.998761e-01 sin(x)
65 -4.67146643 9.991628e-01 sin(x)
66 -4.64628332 9.978158e-01 sin(x)
67 -4.62110022 9.958361e-01 sin(x)
68 -4.59591711 9.932248e-01 sin(x)
69 -4.57073400 9.899837e-01 sin(x)
70 -4.54555089 9.861148e-01 sin(x)
71 -4.52036779 9.816205e-01 sin(x)
72 -4.49518468 9.765037e-01 sin(x)
73 -4.47000157 9.707677e-01 sin(x)
74 -4.44481846 9.644161e-01 sin(x)
75 -4.41963536 9.574528e-01 sin(x)
76 -4.39445225 9.498824e-01 sin(x)
77 -4.36926914 9.417097e-01 sin(x)
78 -4.34408603 9.329397e-01 sin(x)
79 -4.31890293 9.235781e-01 sin(x)
80 -4.29371982 9.136308e-01 sin(x)
81 -4.26853671 9.031041e-01 sin(x)
82 -4.24335360 8.920047e-01 sin(x)
83 -4.21817050 8.803397e-01 sin(x)
84 -4.19298739 8.681164e-01 sin(x)
85 -4.16780428 8.553425e-01 sin(x)
86 -4.14262117 8.420263e-01 sin(x)
87 -4.11743807 8.281760e-01 sin(x)
88 -4.09225496 8.138006e-01 sin(x)
89 -4.06707185 7.989091e-01 sin(x)
90 -4.04188874 7.835109e-01 sin(x)
91 -4.01670564 7.676159e-01 sin(x)
92 -3.99152253 7.512341e-01 sin(x)
93 -3.96633942 7.343759e-01 sin(x)
94 -3.94115631 7.170520e-01 sin(x)
95 -3.91597321 6.992734e-01 sin(x)
96 -3.89079010 6.810513e-01 sin(x)
97 -3.86560699 6.623974e-01 sin(x)
98 -3.84042389 6.433233e-01 sin(x)
99 -3.81524078 6.238413e-01 sin(x)
100 -3.79005767 6.039637e-01 sin(x)
101 -3.76487456 5.837031e-01 sin(x)
102 -3.73969146 5.630723e-01 sin(x)
103 -3.71450835 5.420845e-01 sin(x)
104 -3.68932524 5.207529e-01 sin(x)
105 -3.66414213 4.990910e-01 sin(x)
106 -3.63895903 4.771127e-01 sin(x)
107 -3.61377592 4.548317e-01 sin(x)
108 -3.58859281 4.322624e-01 sin(x)
109 -3.56340970 4.094189e-01 sin(x)
110 -3.53822660 3.863158e-01 sin(x)
111 -3.51304349 3.629677e-01 sin(x)
112 -3.48786038 3.393894e-01 sin(x)
113 -3.46267727 3.155959e-01 sin(x)
114 -3.43749417 2.916023e-01 sin(x)
115 -3.41231106 2.674237e-01 sin(x)
116 -3.38712795 2.430756e-01 sin(x)
117 -3.36194484 2.185733e-01 sin(x)
118 -3.33676174 1.939324e-01 sin(x)
119 -3.31157863 1.691685e-01 sin(x)
120 -3.28639552 1.442974e-01 sin(x)
121 -3.26121241 1.193347e-01 sin(x)
122 -3.23602931 9.429635e-02 sin(x)
123 -3.21084620 6.919820e-02 sin(x)
124 -3.18566309 4.405617e-02 sin(x)
125 -3.16047998 1.888621e-02 sin(x)
126 -3.13529688 -6.295735e-03 sin(x)
127 -3.11011377 -3.147369e-02 sin(x)
128 -3.08493066 -5.663168e-02 sin(x)
129 -3.05974755 -8.175375e-02 sin(x)
130 -3.03456445 -1.068240e-01 sin(x)
131 -3.00938134 -1.318265e-01 sin(x)
132 -2.98419823 -1.567454e-01 sin(x)
133 -2.95901512 -1.815649e-01 sin(x)
134 -2.93383202 -2.062692e-01 sin(x)
135 -2.90864891 -2.308428e-01 sin(x)
136 -2.88346580 -2.552699e-01 sin(x)
137 -2.85828269 -2.795352e-01 sin(x)
138 -2.83309959 -3.036232e-01 sin(x)
139 -2.80791648 -3.275186e-01 sin(x)
140 -2.78273337 -3.512064e-01 sin(x)
141 -2.75755027 -3.746715e-01 sin(x)
142 -2.73236716 -3.978989e-01 sin(x)
143 -2.70718405 -4.208740e-01 sin(x)
144 -2.68200094 -4.435822e-01 sin(x)
145 -2.65681784 -4.660091e-01 sin(x)
146 -2.63163473 -4.881405e-01 sin(x)
147 -2.60645162 -5.099624e-01 sin(x)
148 -2.58126851 -5.314608e-01 sin(x)
149 -2.55608541 -5.526222e-01 sin(x)
150 -2.53090230 -5.734332e-01 sin(x)
151 -2.50571919 -5.938805e-01 sin(x)
152 -2.48053608 -6.139512e-01 sin(x)
153 -2.45535298 -6.336326e-01 sin(x)
154 -2.43016987 -6.529121e-01 sin(x)
155 -2.40498676 -6.717776e-01 sin(x)
156 -2.37980365 -6.902171e-01 sin(x)
157 -2.35462055 -7.082189e-01 sin(x)
158 -2.32943744 -7.257715e-01 sin(x)
159 -2.30425433 -7.428639e-01 sin(x)
160 -2.27907122 -7.594852e-01 sin(x)
161 -2.25388812 -7.756249e-01 sin(x)
162 -2.22870501 -7.912727e-01 sin(x)
163 -2.20352190 -8.064188e-01 sin(x)
164 -2.17833879 -8.210534e-01 sin(x)
165 -2.15315569 -8.351673e-01 sin(x)
166 -2.12797258 -8.487517e-01 sin(x)
167 -2.10278947 -8.617978e-01 sin(x)
168 -2.07760636 -8.742973e-01 sin(x)
169 -2.05242326 -8.862425e-01 sin(x)
170 -2.02724015 -8.976256e-01 sin(x)
171 -2.00205704 -9.084395e-01 sin(x)
172 -1.97687393 -9.186773e-01 sin(x)
173 -1.95169083 -9.283325e-01 sin(x)
174 -1.92650772 -9.373990e-01 sin(x)
175 -1.90132461 -9.458710e-01 sin(x)
176 -1.87614150 -9.537432e-01 sin(x)
177 -1.85095840 -9.610106e-01 sin(x)
178 -1.82577529 -9.676686e-01 sin(x)
179 -1.80059218 -9.737129e-01 sin(x)
180 -1.77540907 -9.791397e-01 sin(x)
181 -1.75022597 -9.839456e-01 sin(x)
182 -1.72504286 -9.881276e-01 sin(x)
183 -1.69985975 -9.916829e-01 sin(x)
184 -1.67467664 -9.946093e-01 sin(x)
185 -1.64949354 -9.969050e-01 sin(x)
186 -1.62431043 -9.985685e-01 sin(x)
187 -1.59912732 -9.995987e-01 sin(x)
188 -1.57394422 -9.999950e-01 sin(x)
189 -1.54876111 -9.997572e-01 sin(x)
190 -1.52357800 -9.988854e-01 sin(x)
191 -1.49839489 -9.973802e-01 sin(x)
192 -1.47321179 -9.952424e-01 sin(x)
193 -1.44802868 -9.924735e-01 sin(x)
194 -1.42284557 -9.890752e-01 sin(x)
195 -1.39766246 -9.850497e-01 sin(x)
196 -1.37247936 -9.803996e-01 sin(x)
197 -1.34729625 -9.751277e-01 sin(x)
198 -1.32211314 -9.692374e-01 sin(x)
199 -1.29693003 -9.627324e-01 sin(x)
200 -1.27174693 -9.556170e-01 sin(x)
201 -1.24656382 -9.478955e-01 sin(x)
202 -1.22138071 -9.395729e-01 sin(x)
203 -1.19619760 -9.306545e-01 sin(x)
204 -1.17101450 -9.211459e-01 sin(x)
205 -1.14583139 -9.110532e-01 sin(x)
206 -1.12064828 -9.003827e-01 sin(x)
207 -1.09546517 -8.891412e-01 sin(x)
208 -1.07028207 -8.773359e-01 sin(x)
209 -1.04509896 -8.649742e-01 sin(x)
210 -1.01991585 -8.520640e-01 sin(x)
211 -0.99473274 -8.386134e-01 sin(x)
212 -0.96954964 -8.246310e-01 sin(x)
213 -0.94436653 -8.101257e-01 sin(x)
214 -0.91918342 -7.951067e-01 sin(x)
215 -0.89400031 -7.795834e-01 sin(x)
216 -0.86881721 -7.635657e-01 sin(x)
217 -0.84363410 -7.470638e-01 sin(x)
218 -0.81845099 -7.300882e-01 sin(x)
219 -0.79326788 -7.126496e-01 sin(x)
220 -0.76808478 -6.947590e-01 sin(x)
221 -0.74290167 -6.764279e-01 sin(x)
222 -0.71771856 -6.576678e-01 sin(x)
223 -0.69253545 -6.384906e-01 sin(x)
224 -0.66735235 -6.189085e-01 sin(x)
225 -0.64216924 -5.989340e-01 sin(x)
226 -0.61698613 -5.785796e-01 sin(x)
227 -0.59180302 -5.578583e-01 sin(x)
228 -0.56661992 -5.367833e-01 sin(x)
229 -0.54143681 -5.153678e-01 sin(x)
230 -0.51625370 -4.936255e-01 sin(x)
231 -0.49107060 -4.715702e-01 sin(x)
232 -0.46588749 -4.492159e-01 sin(x)
233 -0.44070438 -4.265766e-01 sin(x)
234 -0.41552127 -4.036669e-01 sin(x)
235 -0.39033817 -3.805012e-01 sin(x)
236 -0.36515506 -3.570941e-01 sin(x)
237 -0.33997195 -3.334606e-01 sin(x)
238 -0.31478884 -3.096157e-01 sin(x)
239 -0.28960574 -2.855744e-01 sin(x)
240 -0.26442263 -2.613520e-01 sin(x)
241 -0.23923952 -2.369639e-01 sin(x)
242 -0.21405641 -2.124255e-01 sin(x)
243 -0.18887331 -1.877524e-01 sin(x)
244 -0.16369020 -1.629602e-01 sin(x)
245 -0.13850709 -1.380647e-01 sin(x)
246 -0.11332398 -1.130816e-01 sin(x)
247 -0.08814088 -8.802680e-02 sin(x)
248 -0.06295777 -6.291619e-02 sin(x)
249 -0.03777466 -3.776568e-02 sin(x)
250 -0.01259155 -1.259122e-02 sin(x)
251 0.01259155 1.259122e-02 sin(x)
252 0.03777466 3.776568e-02 sin(x)
253 0.06295777 6.291619e-02 sin(x)
254 0.08814088 8.802680e-02 sin(x)
255 0.11332398 1.130816e-01 sin(x)
256 0.13850709 1.380647e-01 sin(x)
257 0.16369020 1.629602e-01 sin(x)
258 0.18887331 1.877524e-01 sin(x)
259 0.21405641 2.124255e-01 sin(x)
260 0.23923952 2.369639e-01 sin(x)
261 0.26442263 2.613520e-01 sin(x)
262 0.28960574 2.855744e-01 sin(x)
263 0.31478884 3.096157e-01 sin(x)
264 0.33997195 3.334606e-01 sin(x)
265 0.36515506 3.570941e-01 sin(x)
266 0.39033817 3.805012e-01 sin(x)
267 0.41552127 4.036669e-01 sin(x)
268 0.44070438 4.265766e-01 sin(x)
269 0.46588749 4.492159e-01 sin(x)
270 0.49107060 4.715702e-01 sin(x)
271 0.51625370 4.936255e-01 sin(x)
272 0.54143681 5.153678e-01 sin(x)
273 0.56661992 5.367833e-01 sin(x)
274 0.59180302 5.578583e-01 sin(x)
275 0.61698613 5.785796e-01 sin(x)
276 0.64216924 5.989340e-01 sin(x)
277 0.66735235 6.189085e-01 sin(x)
278 0.69253545 6.384906e-01 sin(x)
279 0.71771856 6.576678e-01 sin(x)
280 0.74290167 6.764279e-01 sin(x)
281 0.76808478 6.947590e-01 sin(x)
282 0.79326788 7.126496e-01 sin(x)
283 0.81845099 7.300882e-01 sin(x)
284 0.84363410 7.470638e-01 sin(x)
285 0.86881721 7.635657e-01 sin(x)
286 0.89400031 7.795834e-01 sin(x)
287 0.91918342 7.951067e-01 sin(x)
288 0.94436653 8.101257e-01 sin(x)
289 0.96954964 8.246310e-01 sin(x)
290 0.99473274 8.386134e-01 sin(x)
291 1.01991585 8.520640e-01 sin(x)
292 1.04509896 8.649742e-01 sin(x)
293 1.07028207 8.773359e-01 sin(x)
294 1.09546517 8.891412e-01 sin(x)
295 1.12064828 9.003827e-01 sin(x)
296 1.14583139 9.110532e-01 sin(x)
297 1.17101450 9.211459e-01 sin(x)
298 1.19619760 9.306545e-01 sin(x)
299 1.22138071 9.395729e-01 sin(x)
300 1.24656382 9.478955e-01 sin(x)
301 1.27174693 9.556170e-01 sin(x)
302 1.29693003 9.627324e-01 sin(x)
303 1.32211314 9.692374e-01 sin(x)
304 1.34729625 9.751277e-01 sin(x)
305 1.37247936 9.803996e-01 sin(x)
306 1.39766246 9.850497e-01 sin(x)
307 1.42284557 9.890752e-01 sin(x)
308 1.44802868 9.924735e-01 sin(x)
309 1.47321179 9.952424e-01 sin(x)
310 1.49839489 9.973802e-01 sin(x)
311 1.52357800 9.988854e-01 sin(x)
312 1.54876111 9.997572e-01 sin(x)
313 1.57394422 9.999950e-01 sin(x)
314 1.59912732 9.995987e-01 sin(x)
315 1.62431043 9.985685e-01 sin(x)
316 1.64949354 9.969050e-01 sin(x)
317 1.67467664 9.946093e-01 sin(x)
318 1.69985975 9.916829e-01 sin(x)
319 1.72504286 9.881276e-01 sin(x)
320 1.75022597 9.839456e-01 sin(x)
321 1.77540907 9.791397e-01 sin(x)
322 1.80059218 9.737129e-01 sin(x)
323 1.82577529 9.676686e-01 sin(x)
324 1.85095840 9.610106e-01 sin(x)
325 1.87614150 9.537432e-01 sin(x)
326 1.90132461 9.458710e-01 sin(x)
327 1.92650772 9.373990e-01 sin(x)
328 1.95169083 9.283325e-01 sin(x)
329 1.97687393 9.186773e-01 sin(x)
330 2.00205704 9.084395e-01 sin(x)
331 2.02724015 8.976256e-01 sin(x)
332 2.05242326 8.862425e-01 sin(x)
333 2.07760636 8.742973e-01 sin(x)
334 2.10278947 8.617978e-01 sin(x)
335 2.12797258 8.487517e-01 sin(x)
336 2.15315569 8.351673e-01 sin(x)
337 2.17833879 8.210534e-01 sin(x)
338 2.20352190 8.064188e-01 sin(x)
339 2.22870501 7.912727e-01 sin(x)
340 2.25388812 7.756249e-01 sin(x)
341 2.27907122 7.594852e-01 sin(x)
342 2.30425433 7.428639e-01 sin(x)
343 2.32943744 7.257715e-01 sin(x)
344 2.35462055 7.082189e-01 sin(x)
345 2.37980365 6.902171e-01 sin(x)
346 2.40498676 6.717776e-01 sin(x)
347 2.43016987 6.529121e-01 sin(x)
348 2.45535298 6.336326e-01 sin(x)
349 2.48053608 6.139512e-01 sin(x)
350 2.50571919 5.938805e-01 sin(x)
351 2.53090230 5.734332e-01 sin(x)
352 2.55608541 5.526222e-01 sin(x)
353 2.58126851 5.314608e-01 sin(x)
354 2.60645162 5.099624e-01 sin(x)
355 2.63163473 4.881405e-01 sin(x)
356 2.65681784 4.660091e-01 sin(x)
357 2.68200094 4.435822e-01 sin(x)
358 2.70718405 4.208740e-01 sin(x)
359 2.73236716 3.978989e-01 sin(x)
360 2.75755027 3.746715e-01 sin(x)
361 2.78273337 3.512064e-01 sin(x)
362 2.80791648 3.275186e-01 sin(x)
363 2.83309959 3.036232e-01 sin(x)
364 2.85828269 2.795352e-01 sin(x)
365 2.88346580 2.552699e-01 sin(x)
366 2.90864891 2.308428e-01 sin(x)
367 2.93383202 2.062692e-01 sin(x)
368 2.95901512 1.815649e-01 sin(x)
369 2.98419823 1.567454e-01 sin(x)
370 3.00938134 1.318265e-01 sin(x)
371 3.03456445 1.068240e-01 sin(x)
372 3.05974755 8.175375e-02 sin(x)
373 3.08493066 5.663168e-02 sin(x)
374 3.11011377 3.147369e-02 sin(x)
375 3.13529688 6.295735e-03 sin(x)
376 3.16047998 -1.888621e-02 sin(x)
377 3.18566309 -4.405617e-02 sin(x)
378 3.21084620 -6.919820e-02 sin(x)
379 3.23602931 -9.429635e-02 sin(x)
380 3.26121241 -1.193347e-01 sin(x)
381 3.28639552 -1.442974e-01 sin(x)
382 3.31157863 -1.691685e-01 sin(x)
383 3.33676174 -1.939324e-01 sin(x)
384 3.36194484 -2.185733e-01 sin(x)
385 3.38712795 -2.430756e-01 sin(x)
386 3.41231106 -2.674237e-01 sin(x)
387 3.43749417 -2.916023e-01 sin(x)
388 3.46267727 -3.155959e-01 sin(x)
389 3.48786038 -3.393894e-01 sin(x)
390 3.51304349 -3.629677e-01 sin(x)
391 3.53822660 -3.863158e-01 sin(x)
392 3.56340970 -4.094189e-01 sin(x)
393 3.58859281 -4.322624e-01 sin(x)
394 3.61377592 -4.548317e-01 sin(x)
395 3.63895903 -4.771127e-01 sin(x)
396 3.66414213 -4.990910e-01 sin(x)
397 3.68932524 -5.207529e-01 sin(x)
398 3.71450835 -5.420845e-01 sin(x)
399 3.73969146 -5.630723e-01 sin(x)
400 3.76487456 -5.837031e-01 sin(x)
401 3.79005767 -6.039637e-01 sin(x)
402 3.81524078 -6.238413e-01 sin(x)
403 3.84042389 -6.433233e-01 sin(x)
404 3.86560699 -6.623974e-01 sin(x)
405 3.89079010 -6.810513e-01 sin(x)
406 3.91597321 -6.992734e-01 sin(x)
407 3.94115631 -7.170520e-01 sin(x)
408 3.96633942 -7.343759e-01 sin(x)
409 3.99152253 -7.512341e-01 sin(x)
410 4.01670564 -7.676159e-01 sin(x)
411 4.04188874 -7.835109e-01 sin(x)
412 4.06707185 -7.989091e-01 sin(x)
413 4.09225496 -8.138006e-01 sin(x)
414 4.11743807 -8.281760e-01 sin(x)
415 4.14262117 -8.420263e-01 sin(x)
416 4.16780428 -8.553425e-01 sin(x)
417 4.19298739 -8.681164e-01 sin(x)
418 4.21817050 -8.803397e-01 sin(x)
419 4.24335360 -8.920047e-01 sin(x)
420 4.26853671 -9.031041e-01 sin(x)
421 4.29371982 -9.136308e-01 sin(x)
422 4.31890293 -9.235781e-01 sin(x)
423 4.34408603 -9.329397e-01 sin(x)
424 4.36926914 -9.417097e-01 sin(x)
425 4.39445225 -9.498824e-01 sin(x)
426 4.41963536 -9.574528e-01 sin(x)
427 4.44481846 -9.644161e-01 sin(x)
428 4.47000157 -9.707677e-01 sin(x)
429 4.49518468 -9.765037e-01 sin(x)
430 4.52036779 -9.816205e-01 sin(x)
431 4.54555089 -9.861148e-01 sin(x)
432 4.57073400 -9.899837e-01 sin(x)
433 4.59591711 -9.932248e-01 sin(x)
434 4.62110022 -9.958361e-01 sin(x)
435 4.64628332 -9.978158e-01 sin(x)
436 4.67146643 -9.991628e-01 sin(x)
437 4.69664954 -9.998761e-01 sin(x)
438 4.72183265 -9.999554e-01 sin(x)
439 4.74701575 -9.994006e-01 sin(x)
440 4.77219886 -9.982119e-01 sin(x)
441 4.79738197 -9.963903e-01 sin(x)
442 4.82256508 -9.939368e-01 sin(x)
443 4.84774818 -9.908529e-01 sin(x)
444 4.87293129 -9.871407e-01 sin(x)
445 4.89811440 -9.828026e-01 sin(x)
446 4.92329751 -9.778411e-01 sin(x)
447 4.94848061 -9.722596e-01 sin(x)
448 4.97366372 -9.660615e-01 sin(x)
449 4.99884683 -9.592507e-01 sin(x)
450 5.02402993 -9.518317e-01 sin(x)
451 5.04921304 -9.438090e-01 sin(x)
452 5.07439615 -9.351879e-01 sin(x)
453 5.09957926 -9.259736e-01 sin(x)
454 5.12476236 -9.161722e-01 sin(x)
455 5.14994547 -9.057897e-01 sin(x)
456 5.17512858 -8.948329e-01 sin(x)
457 5.20031169 -8.833086e-01 sin(x)
458 5.22549479 -8.712241e-01 sin(x)
459 5.25067790 -8.585872e-01 sin(x)
460 5.27586101 -8.454057e-01 sin(x)
461 5.30104412 -8.316882e-01 sin(x)
462 5.32622722 -8.174432e-01 sin(x)
463 5.35141033 -8.026798e-01 sin(x)
464 5.37659344 -7.874074e-01 sin(x)
465 5.40177655 -7.716357e-01 sin(x)
466 5.42695965 -7.553746e-01 sin(x)
467 5.45214276 -7.386346e-01 sin(x)
468 5.47732587 -7.214261e-01 sin(x)
469 5.50250898 -7.037601e-01 sin(x)
470 5.52769208 -6.856478e-01 sin(x)
471 5.55287519 -6.671007e-01 sin(x)
472 5.57805830 -6.481306e-01 sin(x)
473 5.60324141 -6.287494e-01 sin(x)
474 5.62842451 -6.089695e-01 sin(x)
475 5.65360762 -5.888035e-01 sin(x)
476 5.67879073 -5.682640e-01 sin(x)
477 5.70397384 -5.473642e-01 sin(x)
478 5.72915694 -5.261173e-01 sin(x)
479 5.75434005 -5.045367e-01 sin(x)
480 5.77952316 -4.826362e-01 sin(x)
481 5.80470627 -4.604296e-01 sin(x)
482 5.82988937 -4.379310e-01 sin(x)
483 5.85507248 -4.151547e-01 sin(x)
484 5.88025559 -3.921151e-01 sin(x)
485 5.90543870 -3.688269e-01 sin(x)
486 5.93062180 -3.453048e-01 sin(x)
487 5.95580491 -3.215637e-01 sin(x)
488 5.98098802 -2.976186e-01 sin(x)
489 6.00617113 -2.734849e-01 sin(x)
490 6.03135423 -2.491777e-01 sin(x)
491 6.05653734 -2.247125e-01 sin(x)
492 6.08172045 -2.001048e-01 sin(x)
493 6.10690356 -1.753702e-01 sin(x)
494 6.13208666 -1.505244e-01 sin(x)
495 6.15726977 -1.255831e-01 sin(x)
496 6.18245288 -1.005622e-01 sin(x)
497 6.20763598 -7.547747e-02 sin(x)
498 6.23281909 -5.034492e-02 sin(x)
499 6.25800220 -2.518045e-02 sin(x)
500 6.28318531 -2.449213e-16 sin(x)
501 -6.28318531 1.000000e+00 cos(x)
502 -6.25800220 9.996829e-01 cos(x)
503 -6.23281909 9.987319e-01 cos(x)
504 -6.20763598 9.971475e-01 cos(x)
505 -6.18245288 9.949308e-01 cos(x)
506 -6.15726977 9.920831e-01 cos(x)
507 -6.13208666 9.886063e-01 cos(x)
508 -6.10690356 9.845026e-01 cos(x)
509 -6.08172045 9.797745e-01 cos(x)
510 -6.05653734 9.744251e-01 cos(x)
511 -6.03135423 9.684578e-01 cos(x)
512 -6.00617113 9.618763e-01 cos(x)
513 -5.98098802 9.546848e-01 cos(x)
514 -5.95580491 9.468880e-01 cos(x)
515 -5.93062180 9.384906e-01 cos(x)
516 -5.90543870 9.294981e-01 cos(x)
517 -5.88025559 9.199162e-01 cos(x)
518 -5.85507248 9.097508e-01 cos(x)
519 -5.82988937 8.990086e-01 cos(x)
520 -5.80470627 8.876962e-01 cos(x)
521 -5.77952316 8.758210e-01 cos(x)
522 -5.75434005 8.633903e-01 cos(x)
523 -5.72915694 8.504120e-01 cos(x)
524 -5.70397384 8.368945e-01 cos(x)
525 -5.67879073 8.228463e-01 cos(x)
526 -5.65360762 8.082762e-01 cos(x)
527 -5.62842451 7.931936e-01 cos(x)
528 -5.60324141 7.776080e-01 cos(x)
529 -5.57805830 7.615292e-01 cos(x)
530 -5.55287519 7.449676e-01 cos(x)
531 -5.52769208 7.279335e-01 cos(x)
532 -5.50250898 7.104377e-01 cos(x)
533 -5.47732587 6.924915e-01 cos(x)
534 -5.45214276 6.741061e-01 cos(x)
535 -5.42695965 6.552932e-01 cos(x)
536 -5.40177655 6.360647e-01 cos(x)
537 -5.37659344 6.164329e-01 cos(x)
538 -5.35141033 5.964102e-01 cos(x)
539 -5.32622722 5.760092e-01 cos(x)
540 -5.30104412 5.552430e-01 cos(x)
541 -5.27586101 5.341247e-01 cos(x)
542 -5.25067790 5.126676e-01 cos(x)
543 -5.22549479 4.908855e-01 cos(x)
544 -5.20031169 4.687920e-01 cos(x)
545 -5.17512858 4.464013e-01 cos(x)
546 -5.14994547 4.237274e-01 cos(x)
547 -5.12476236 4.007849e-01 cos(x)
548 -5.09957926 3.775882e-01 cos(x)
549 -5.07439615 3.541520e-01 cos(x)
550 -5.04921304 3.304913e-01 cos(x)
551 -5.02402993 3.066210e-01 cos(x)
552 -4.99884683 2.825562e-01 cos(x)
553 -4.97366372 2.583122e-01 cos(x)
554 -4.94848061 2.339045e-01 cos(x)
555 -4.92329751 2.093484e-01 cos(x)
556 -4.89811440 1.846595e-01 cos(x)
557 -4.87293129 1.598536e-01 cos(x)
558 -4.84774818 1.349462e-01 cos(x)
559 -4.82256508 1.099533e-01 cos(x)
560 -4.79738197 8.489070e-02 cos(x)
561 -4.77219886 5.977423e-02 cos(x)
562 -4.74701575 3.461985e-02 cos(x)
563 -4.72183265 9.443525e-03 cos(x)
564 -4.69664954 -1.573879e-02 cos(x)
565 -4.67146643 -4.091113e-02 cos(x)
566 -4.64628332 -6.605752e-02 cos(x)
567 -4.62110022 -9.116202e-02 cos(x)
568 -4.59591711 -1.162087e-01 cos(x)
569 -4.57073400 -1.411817e-01 cos(x)
570 -4.54555089 -1.660652e-01 cos(x)
571 -4.52036779 -1.908433e-01 cos(x)
572 -4.49518468 -2.155005e-01 cos(x)
573 -4.47000157 -2.400209e-01 cos(x)
574 -4.44481846 -2.643892e-01 cos(x)
575 -4.41963536 -2.885898e-01 cos(x)
576 -4.39445225 -3.126074e-01 cos(x)
577 -4.36926914 -3.364267e-01 cos(x)
578 -4.34408603 -3.600327e-01 cos(x)
579 -4.31890293 -3.834104e-01 cos(x)
580 -4.29371982 -4.065449e-01 cos(x)
581 -4.26853671 -4.294216e-01 cos(x)
582 -4.24335360 -4.520260e-01 cos(x)
583 -4.21817050 -4.743438e-01 cos(x)
584 -4.19298739 -4.963607e-01 cos(x)
585 -4.16780428 -5.180629e-01 cos(x)
586 -4.14262117 -5.394365e-01 cos(x)
587 -4.11743807 -5.604681e-01 cos(x)
588 -4.09225496 -5.811442e-01 cos(x)
589 -4.06707185 -6.014518e-01 cos(x)
590 -4.04188874 -6.213780e-01 cos(x)
591 -4.01670564 -6.409101e-01 cos(x)
592 -3.99152253 -6.600358e-01 cos(x)
593 -3.96633942 -6.787430e-01 cos(x)
594 -3.94115631 -6.970197e-01 cos(x)
595 -3.91597321 -7.148543e-01 cos(x)
596 -3.89079010 -7.322357e-01 cos(x)
597 -3.86560699 -7.491527e-01 cos(x)
598 -3.84042389 -7.655946e-01 cos(x)
599 -3.81524078 -7.815510e-01 cos(x)
600 -3.79005767 -7.970118e-01 cos(x)
601 -3.76487456 -8.119672e-01 cos(x)
602 -3.73969146 -8.264076e-01 cos(x)
603 -3.71450835 -8.403240e-01 cos(x)
604 -3.68932524 -8.537075e-01 cos(x)
605 -3.66414213 -8.665496e-01 cos(x)
606 -3.63895903 -8.788421e-01 cos(x)
607 -3.61377592 -8.905774e-01 cos(x)
608 -3.58859281 -9.017479e-01 cos(x)
609 -3.56340970 -9.123465e-01 cos(x)
610 -3.53822660 -9.223666e-01 cos(x)
611 -3.51304349 -9.318017e-01 cos(x)
612 -3.48786038 -9.406460e-01 cos(x)
613 -3.46267727 -9.488937e-01 cos(x)
614 -3.43749417 -9.565396e-01 cos(x)
615 -3.41231106 -9.635790e-01 cos(x)
616 -3.38712795 -9.700073e-01 cos(x)
617 -3.36194484 -9.758205e-01 cos(x)
618 -3.33676174 -9.810149e-01 cos(x)
619 -3.31157863 -9.855871e-01 cos(x)
620 -3.28639552 -9.895344e-01 cos(x)
621 -3.26121241 -9.928541e-01 cos(x)
622 -3.23602931 -9.955442e-01 cos(x)
623 -3.21084620 -9.976029e-01 cos(x)
624 -3.18566309 -9.990291e-01 cos(x)
625 -3.16047998 -9.998216e-01 cos(x)
626 -3.13529688 -9.999802e-01 cos(x)
627 -3.11011377 -9.995046e-01 cos(x)
628 -3.08493066 -9.983951e-01 cos(x)
629 -3.05974755 -9.966526e-01 cos(x)
630 -3.03456445 -9.942779e-01 cos(x)
631 -3.00938134 -9.912728e-01 cos(x)
632 -2.98419823 -9.876390e-01 cos(x)
633 -2.95901512 -9.833790e-01 cos(x)
634 -2.93383202 -9.784953e-01 cos(x)
635 -2.90864891 -9.729911e-01 cos(x)
636 -2.88346580 -9.668698e-01 cos(x)
637 -2.85828269 -9.601354e-01 cos(x)
638 -2.83309959 -9.527922e-01 cos(x)
639 -2.80791648 -9.448447e-01 cos(x)
640 -2.78273337 -9.362981e-01 cos(x)
641 -2.75755027 -9.271576e-01 cos(x)
642 -2.73236716 -9.174293e-01 cos(x)
643 -2.70718405 -9.071191e-01 cos(x)
644 -2.68200094 -8.962337e-01 cos(x)
645 -2.65681784 -8.847799e-01 cos(x)
646 -2.63163473 -8.727650e-01 cos(x)
647 -2.60645162 -8.601967e-01 cos(x)
648 -2.58126851 -8.470829e-01 cos(x)
649 -2.55608541 -8.334319e-01 cos(x)
650 -2.53090230 -8.192523e-01 cos(x)
651 -2.50571919 -8.045533e-01 cos(x)
652 -2.48053608 -7.893440e-01 cos(x)
653 -2.45535298 -7.736341e-01 cos(x)
654 -2.43016987 -7.574337e-01 cos(x)
655 -2.40498676 -7.407529e-01 cos(x)
656 -2.37980365 -7.236024e-01 cos(x)
657 -2.35462055 -7.059930e-01 cos(x)
658 -2.32943744 -6.879358e-01 cos(x)
659 -2.30425433 -6.694425e-01 cos(x)
660 -2.27907122 -6.505245e-01 cos(x)
661 -2.25388812 -6.311941e-01 cos(x)
662 -2.22870501 -6.114634e-01 cos(x)
663 -2.20352190 -5.913449e-01 cos(x)
664 -2.17833879 -5.708514e-01 cos(x)
665 -2.15315569 -5.499959e-01 cos(x)
666 -2.12797258 -5.287916e-01 cos(x)
667 -2.10278947 -5.072520e-01 cos(x)
668 -2.07760636 -4.853907e-01 cos(x)
669 -2.05242326 -4.632216e-01 cos(x)
670 -2.02724015 -4.407588e-01 cos(x)
671 -2.00205704 -4.180164e-01 cos(x)
672 -1.97687393 -3.950090e-01 cos(x)
673 -1.95169083 -3.717510e-01 cos(x)
674 -1.92650772 -3.482573e-01 cos(x)
675 -1.90132461 -3.245428e-01 cos(x)
676 -1.87614150 -3.006224e-01 cos(x)
677 -1.85095840 -2.765114e-01 cos(x)
678 -1.82577529 -2.522251e-01 cos(x)
679 -1.80059218 -2.277788e-01 cos(x)
680 -1.77540907 -2.031880e-01 cos(x)
681 -1.75022597 -1.784684e-01 cos(x)
682 -1.72504286 -1.536356e-01 cos(x)
683 -1.69985975 -1.287054e-01 cos(x)
684 -1.67467664 -1.036936e-01 cos(x)
685 -1.64949354 -7.861600e-02 cos(x)
686 -1.62431043 -5.348857e-02 cos(x)
687 -1.59912732 -2.832721e-02 cos(x)
688 -1.57394422 -3.147883e-03 cos(x)
689 -1.54876111 2.203344e-02 cos(x)
690 -1.52357800 4.720078e-02 cos(x)
691 -1.49839489 7.233820e-02 cos(x)
692 -1.47321179 9.742974e-02 cos(x)
693 -1.44802868 1.224595e-01 cos(x)
694 -1.42284557 1.474116e-01 cos(x)
695 -1.39766246 1.722702e-01 cos(x)
696 -1.37247936 1.970196e-01 cos(x)
697 -1.34729625 2.216440e-01 cos(x)
698 -1.32211314 2.461279e-01 cos(x)
699 -1.29693003 2.704557e-01 cos(x)
700 -1.27174693 2.946119e-01 cos(x)
701 -1.24656382 3.185814e-01 cos(x)
702 -1.22138071 3.423488e-01 cos(x)
703 -1.19619760 3.658991e-01 cos(x)
704 -1.17101450 3.892174e-01 cos(x)
705 -1.14583139 4.122888e-01 cos(x)
706 -1.12064828 4.350988e-01 cos(x)
707 -1.09546517 4.576329e-01 cos(x)
708 -1.07028207 4.798768e-01 cos(x)
709 -1.04509896 5.018163e-01 cos(x)
710 -1.01991585 5.234377e-01 cos(x)
711 -0.99473274 5.447270e-01 cos(x)
712 -0.96954964 5.656710e-01 cos(x)
713 -0.94436653 5.862562e-01 cos(x)
714 -0.91918342 6.064696e-01 cos(x)
715 -0.89400031 6.262985e-01 cos(x)
716 -0.86881721 6.457301e-01 cos(x)
717 -0.84363410 6.647523e-01 cos(x)
718 -0.81845099 6.833529e-01 cos(x)
719 -0.79326788 7.015202e-01 cos(x)
720 -0.76808478 7.192426e-01 cos(x)
721 -0.74290167 7.365089e-01 cos(x)
722 -0.71771856 7.533081e-01 cos(x)
723 -0.69253545 7.696296e-01 cos(x)
724 -0.66735235 7.854631e-01 cos(x)
725 -0.64216924 8.007984e-01 cos(x)
726 -0.61698613 8.156259e-01 cos(x)
727 -0.59180302 8.299362e-01 cos(x)
728 -0.56661992 8.437202e-01 cos(x)
729 -0.54143681 8.569691e-01 cos(x)
730 -0.51625370 8.696745e-01 cos(x)
731 -0.49107060 8.818285e-01 cos(x)
732 -0.46588749 8.934232e-01 cos(x)
733 -0.44070438 9.044514e-01 cos(x)
734 -0.41552127 9.149060e-01 cos(x)
735 -0.39033817 9.247804e-01 cos(x)
736 -0.36515506 9.340684e-01 cos(x)
737 -0.33997195 9.427640e-01 cos(x)
738 -0.31478884 9.508618e-01 cos(x)
739 -0.28960574 9.583565e-01 cos(x)
740 -0.26442263 9.652436e-01 cos(x)
741 -0.23923952 9.715185e-01 cos(x)
742 -0.21405641 9.771773e-01 cos(x)
743 -0.18887331 9.822164e-01 cos(x)
744 -0.16369020 9.866326e-01 cos(x)
745 -0.13850709 9.904232e-01 cos(x)
746 -0.11332398 9.935857e-01 cos(x)
747 -0.08814088 9.961181e-01 cos(x)
748 -0.06295777 9.980188e-01 cos(x)
749 -0.03777466 9.992866e-01 cos(x)
750 -0.01259155 9.999207e-01 cos(x)
751 0.01259155 9.999207e-01 cos(x)
752 0.03777466 9.992866e-01 cos(x)
753 0.06295777 9.980188e-01 cos(x)
754 0.08814088 9.961181e-01 cos(x)
755 0.11332398 9.935857e-01 cos(x)
756 0.13850709 9.904232e-01 cos(x)
757 0.16369020 9.866326e-01 cos(x)
758 0.18887331 9.822164e-01 cos(x)
759 0.21405641 9.771773e-01 cos(x)
760 0.23923952 9.715185e-01 cos(x)
761 0.26442263 9.652436e-01 cos(x)
762 0.28960574 9.583565e-01 cos(x)
763 0.31478884 9.508618e-01 cos(x)
764 0.33997195 9.427640e-01 cos(x)
765 0.36515506 9.340684e-01 cos(x)
766 0.39033817 9.247804e-01 cos(x)
767 0.41552127 9.149060e-01 cos(x)
768 0.44070438 9.044514e-01 cos(x)
769 0.46588749 8.934232e-01 cos(x)
770 0.49107060 8.818285e-01 cos(x)
771 0.51625370 8.696745e-01 cos(x)
772 0.54143681 8.569691e-01 cos(x)
773 0.56661992 8.437202e-01 cos(x)
774 0.59180302 8.299362e-01 cos(x)
775 0.61698613 8.156259e-01 cos(x)
776 0.64216924 8.007984e-01 cos(x)
777 0.66735235 7.854631e-01 cos(x)
778 0.69253545 7.696296e-01 cos(x)
779 0.71771856 7.533081e-01 cos(x)
780 0.74290167 7.365089e-01 cos(x)
781 0.76808478 7.192426e-01 cos(x)
782 0.79326788 7.015202e-01 cos(x)
783 0.81845099 6.833529e-01 cos(x)
784 0.84363410 6.647523e-01 cos(x)
785 0.86881721 6.457301e-01 cos(x)
786 0.89400031 6.262985e-01 cos(x)
787 0.91918342 6.064696e-01 cos(x)
788 0.94436653 5.862562e-01 cos(x)
789 0.96954964 5.656710e-01 cos(x)
790 0.99473274 5.447270e-01 cos(x)
791 1.01991585 5.234377e-01 cos(x)
792 1.04509896 5.018163e-01 cos(x)
793 1.07028207 4.798768e-01 cos(x)
794 1.09546517 4.576329e-01 cos(x)
795 1.12064828 4.350988e-01 cos(x)
796 1.14583139 4.122888e-01 cos(x)
797 1.17101450 3.892174e-01 cos(x)
798 1.19619760 3.658991e-01 cos(x)
799 1.22138071 3.423488e-01 cos(x)
800 1.24656382 3.185814e-01 cos(x)
801 1.27174693 2.946119e-01 cos(x)
802 1.29693003 2.704557e-01 cos(x)
803 1.32211314 2.461279e-01 cos(x)
804 1.34729625 2.216440e-01 cos(x)
805 1.37247936 1.970196e-01 cos(x)
806 1.39766246 1.722702e-01 cos(x)
807 1.42284557 1.474116e-01 cos(x)
808 1.44802868 1.224595e-01 cos(x)
809 1.47321179 9.742974e-02 cos(x)
810 1.49839489 7.233820e-02 cos(x)
811 1.52357800 4.720078e-02 cos(x)
812 1.54876111 2.203344e-02 cos(x)
813 1.57394422 -3.147883e-03 cos(x)
814 1.59912732 -2.832721e-02 cos(x)
815 1.62431043 -5.348857e-02 cos(x)
816 1.64949354 -7.861600e-02 cos(x)
817 1.67467664 -1.036936e-01 cos(x)
818 1.69985975 -1.287054e-01 cos(x)
819 1.72504286 -1.536356e-01 cos(x)
820 1.75022597 -1.784684e-01 cos(x)
821 1.77540907 -2.031880e-01 cos(x)
822 1.80059218 -2.277788e-01 cos(x)
823 1.82577529 -2.522251e-01 cos(x)
824 1.85095840 -2.765114e-01 cos(x)
825 1.87614150 -3.006224e-01 cos(x)
826 1.90132461 -3.245428e-01 cos(x)
827 1.92650772 -3.482573e-01 cos(x)
828 1.95169083 -3.717510e-01 cos(x)
829 1.97687393 -3.950090e-01 cos(x)
830 2.00205704 -4.180164e-01 cos(x)
831 2.02724015 -4.407588e-01 cos(x)
832 2.05242326 -4.632216e-01 cos(x)
833 2.07760636 -4.853907e-01 cos(x)
834 2.10278947 -5.072520e-01 cos(x)
835 2.12797258 -5.287916e-01 cos(x)
836 2.15315569 -5.499959e-01 cos(x)
837 2.17833879 -5.708514e-01 cos(x)
838 2.20352190 -5.913449e-01 cos(x)
839 2.22870501 -6.114634e-01 cos(x)
840 2.25388812 -6.311941e-01 cos(x)
841 2.27907122 -6.505245e-01 cos(x)
842 2.30425433 -6.694425e-01 cos(x)
843 2.32943744 -6.879358e-01 cos(x)
844 2.35462055 -7.059930e-01 cos(x)
845 2.37980365 -7.236024e-01 cos(x)
846 2.40498676 -7.407529e-01 cos(x)
847 2.43016987 -7.574337e-01 cos(x)
848 2.45535298 -7.736341e-01 cos(x)
849 2.48053608 -7.893440e-01 cos(x)
850 2.50571919 -8.045533e-01 cos(x)
851 2.53090230 -8.192523e-01 cos(x)
852 2.55608541 -8.334319e-01 cos(x)
853 2.58126851 -8.470829e-01 cos(x)
854 2.60645162 -8.601967e-01 cos(x)
855 2.63163473 -8.727650e-01 cos(x)
856 2.65681784 -8.847799e-01 cos(x)
857 2.68200094 -8.962337e-01 cos(x)
858 2.70718405 -9.071191e-01 cos(x)
859 2.73236716 -9.174293e-01 cos(x)
860 2.75755027 -9.271576e-01 cos(x)
861 2.78273337 -9.362981e-01 cos(x)
862 2.80791648 -9.448447e-01 cos(x)
863 2.83309959 -9.527922e-01 cos(x)
864 2.85828269 -9.601354e-01 cos(x)
865 2.88346580 -9.668698e-01 cos(x)
866 2.90864891 -9.729911e-01 cos(x)
867 2.93383202 -9.784953e-01 cos(x)
868 2.95901512 -9.833790e-01 cos(x)
869 2.98419823 -9.876390e-01 cos(x)
870 3.00938134 -9.912728e-01 cos(x)
871 3.03456445 -9.942779e-01 cos(x)
872 3.05974755 -9.966526e-01 cos(x)
873 3.08493066 -9.983951e-01 cos(x)
874 3.11011377 -9.995046e-01 cos(x)
875 3.13529688 -9.999802e-01 cos(x)
876 3.16047998 -9.998216e-01 cos(x)
877 3.18566309 -9.990291e-01 cos(x)
878 3.21084620 -9.976029e-01 cos(x)
879 3.23602931 -9.955442e-01 cos(x)
880 3.26121241 -9.928541e-01 cos(x)
881 3.28639552 -9.895344e-01 cos(x)
882 3.31157863 -9.855871e-01 cos(x)
883 3.33676174 -9.810149e-01 cos(x)
884 3.36194484 -9.758205e-01 cos(x)
885 3.38712795 -9.700073e-01 cos(x)
886 3.41231106 -9.635790e-01 cos(x)
887 3.43749417 -9.565396e-01 cos(x)
888 3.46267727 -9.488937e-01 cos(x)
889 3.48786038 -9.406460e-01 cos(x)
890 3.51304349 -9.318017e-01 cos(x)
891 3.53822660 -9.223666e-01 cos(x)
892 3.56340970 -9.123465e-01 cos(x)
893 3.58859281 -9.017479e-01 cos(x)
894 3.61377592 -8.905774e-01 cos(x)
895 3.63895903 -8.788421e-01 cos(x)
896 3.66414213 -8.665496e-01 cos(x)
897 3.68932524 -8.537075e-01 cos(x)
898 3.71450835 -8.403240e-01 cos(x)
899 3.73969146 -8.264076e-01 cos(x)
900 3.76487456 -8.119672e-01 cos(x)
901 3.79005767 -7.970118e-01 cos(x)
902 3.81524078 -7.815510e-01 cos(x)
903 3.84042389 -7.655946e-01 cos(x)
904 3.86560699 -7.491527e-01 cos(x)
905 3.89079010 -7.322357e-01 cos(x)
906 3.91597321 -7.148543e-01 cos(x)
907 3.94115631 -6.970197e-01 cos(x)
908 3.96633942 -6.787430e-01 cos(x)
909 3.99152253 -6.600358e-01 cos(x)
910 4.01670564 -6.409101e-01 cos(x)
911 4.04188874 -6.213780e-01 cos(x)
912 4.06707185 -6.014518e-01 cos(x)
913 4.09225496 -5.811442e-01 cos(x)
914 4.11743807 -5.604681e-01 cos(x)
915 4.14262117 -5.394365e-01 cos(x)
916 4.16780428 -5.180629e-01 cos(x)
917 4.19298739 -4.963607e-01 cos(x)
918 4.21817050 -4.743438e-01 cos(x)
919 4.24335360 -4.520260e-01 cos(x)
920 4.26853671 -4.294216e-01 cos(x)
921 4.29371982 -4.065449e-01 cos(x)
922 4.31890293 -3.834104e-01 cos(x)
923 4.34408603 -3.600327e-01 cos(x)
924 4.36926914 -3.364267e-01 cos(x)
925 4.39445225 -3.126074e-01 cos(x)
926 4.41963536 -2.885898e-01 cos(x)
927 4.44481846 -2.643892e-01 cos(x)
928 4.47000157 -2.400209e-01 cos(x)
929 4.49518468 -2.155005e-01 cos(x)
930 4.52036779 -1.908433e-01 cos(x)
931 4.54555089 -1.660652e-01 cos(x)
932 4.57073400 -1.411817e-01 cos(x)
933 4.59591711 -1.162087e-01 cos(x)
934 4.62110022 -9.116202e-02 cos(x)
935 4.64628332 -6.605752e-02 cos(x)
936 4.67146643 -4.091113e-02 cos(x)
937 4.69664954 -1.573879e-02 cos(x)
938 4.72183265 9.443525e-03 cos(x)
939 4.74701575 3.461985e-02 cos(x)
940 4.77219886 5.977423e-02 cos(x)
941 4.79738197 8.489070e-02 cos(x)
942 4.82256508 1.099533e-01 cos(x)
943 4.84774818 1.349462e-01 cos(x)
944 4.87293129 1.598536e-01 cos(x)
945 4.89811440 1.846595e-01 cos(x)
946 4.92329751 2.093484e-01 cos(x)
947 4.94848061 2.339045e-01 cos(x)
948 4.97366372 2.583122e-01 cos(x)
949 4.99884683 2.825562e-01 cos(x)
950 5.02402993 3.066210e-01 cos(x)
951 5.04921304 3.304913e-01 cos(x)
952 5.07439615 3.541520e-01 cos(x)
953 5.09957926 3.775882e-01 cos(x)
954 5.12476236 4.007849e-01 cos(x)
955 5.14994547 4.237274e-01 cos(x)
956 5.17512858 4.464013e-01 cos(x)
957 5.20031169 4.687920e-01 cos(x)
958 5.22549479 4.908855e-01 cos(x)
959 5.25067790 5.126676e-01 cos(x)
960 5.27586101 5.341247e-01 cos(x)
961 5.30104412 5.552430e-01 cos(x)
962 5.32622722 5.760092e-01 cos(x)
963 5.35141033 5.964102e-01 cos(x)
964 5.37659344 6.164329e-01 cos(x)
965 5.40177655 6.360647e-01 cos(x)
966 5.42695965 6.552932e-01 cos(x)
967 5.45214276 6.741061e-01 cos(x)
968 5.47732587 6.924915e-01 cos(x)
969 5.50250898 7.104377e-01 cos(x)
970 5.52769208 7.279335e-01 cos(x)
971 5.55287519 7.449676e-01 cos(x)
972 5.57805830 7.615292e-01 cos(x)
973 5.60324141 7.776080e-01 cos(x)
974 5.62842451 7.931936e-01 cos(x)
975 5.65360762 8.082762e-01 cos(x)
976 5.67879073 8.228463e-01 cos(x)
977 5.70397384 8.368945e-01 cos(x)
978 5.72915694 8.504120e-01 cos(x)
979 5.75434005 8.633903e-01 cos(x)
980 5.77952316 8.758210e-01 cos(x)
981 5.80470627 8.876962e-01 cos(x)
982 5.82988937 8.990086e-01 cos(x)
983 5.85507248 9.097508e-01 cos(x)
984 5.88025559 9.199162e-01 cos(x)
985 5.90543870 9.294981e-01 cos(x)
986 5.93062180 9.384906e-01 cos(x)
987 5.95580491 9.468880e-01 cos(x)
988 5.98098802 9.546848e-01 cos(x)
989 6.00617113 9.618763e-01 cos(x)
990 6.03135423 9.684578e-01 cos(x)
991 6.05653734 9.744251e-01 cos(x)
992 6.08172045 9.797745e-01 cos(x)
993 6.10690356 9.845026e-01 cos(x)
994 6.13208666 9.886063e-01 cos(x)
995 6.15726977 9.920831e-01 cos(x)
996 6.18245288 9.949308e-01 cos(x)
997 6.20763598 9.971475e-01 cos(x)
998 6.23281909 9.987319e-01 cos(x)
999 6.25800220 9.996829e-01 cos(x)
1000 6.28318531 1.000000e+00 cos(x)
<-ggplot(df, aes(x=x,y=y,color=group,linetype = group))
p p
<-p+geom_line(size=1.2)
p p
<-p+labs(title = "function Curves: sin(x) and cos(x)",
px="x",
y="y=f(x)",
color="Function",
linetype="Function")
p
<-p+theme_minimal()
p p