Firstly…A big thank you to the upland volunteers. If it wasn’t for their hard work over many years we wouldn’t be able to get the data in order for us to gain insight into the changing conditions of upland peat.
The correlations below are based on data collected during 2021 - 2023 only. We wanted to see any emerging ‘linkages’ between Peat Depth and land cover, then look at the conditions of Peat against land cover. We utilised the very common ‘Pearson’ correlation formula where values are between (-1 and 1) where:-
‘-1’ indicates a perfectly ‘negative’ linear correlation between two variables. ‘0’ indicates ‘no’ linear correlation between two variables. ‘1’ indicates a perfectly ‘positive’ linear correlation between two variables.
We have also changed some of the fields indicating the percentage spans to ‘numeric’ as follows, 1 - 5% to ‘3’, 6 - 10% to ‘8’, 11 -20% to ‘15.5’, 21 - 50% to ‘35.5’, 51 - 75% to ‘63’ and finally 76 - 100% to ‘88’.
Where we are comparing (‘Slope’ = ‘Flat’) changes to ‘1’, (‘Slope’ = ‘Gentle’) to ‘2’ and (‘Slope’ = ‘Steep’) to ‘3’. Where we are comparing (‘Weather’ = ‘Dry’) to ‘1’, (‘Weather’ = ‘Wet’) to ‘2’. Where we are comparing (‘Peat Softness’ = ‘Firm’) to ‘1’, (‘Peat Softness’ = ‘Soft’) to ‘2’. Where we are comparing (‘Surface Wetness’ = ‘Dry’) to ‘1’, (‘Surface Wetness’ = ‘Wet’) to ‘2’, (‘Surface Wetness’ = ‘Surface Water Present’) to ‘3’.
library(ggstatsplot)
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
# correlogram
ggstatsplot::ggcorrmat(
data = numeric_columns,
type = "parametric", # parametric for Pearson, nonparametric for Spearman's correlation
colors = c("darkred", "white", "seagreen") # change default colors
)
library(corrplot)
library(dplyr)
library(ggstatsplot)
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
mydata <- numeric_columns
mydata <- mydata %>% replace(is.na(.), 0)
cor(mydata)
## heather_cover_numeric molinia_cover_numeric
## heather_cover_numeric 1.00000000 -0.263201655
## molinia_cover_numeric -0.26320165 1.000000000
## sphagnum_cover_numeric 0.03586938 0.009475874
## bare_ground_cover_numeric 0.03186760 -0.219077340
## cotton_grass_cover_numeric -0.01127984 -0.171267795
## slope_numeric -0.11739029 0.028955137
## weather_numeric 0.07600996 -0.071492650
## peat_softness_numeric -0.01587995 -0.149217309
## surface_wetness_numeric 0.15611982 -0.143207368
## sphagnum_cover_numeric bare_ground_cover_numeric
## heather_cover_numeric 0.035869382 0.03186760
## molinia_cover_numeric 0.009475874 -0.21907734
## sphagnum_cover_numeric 1.000000000 -0.08463160
## bare_ground_cover_numeric -0.084631598 1.00000000
## cotton_grass_cover_numeric -0.056022824 0.03485980
## slope_numeric -0.166180207 -0.04454587
## weather_numeric 0.105978238 -0.06017348
## peat_softness_numeric 0.151816480 0.14157819
## surface_wetness_numeric 0.152883679 0.08095347
## cotton_grass_cover_numeric slope_numeric
## heather_cover_numeric -0.01127984 -0.11739029
## molinia_cover_numeric -0.17126779 0.02895514
## sphagnum_cover_numeric -0.05602282 -0.16618021
## bare_ground_cover_numeric 0.03485980 -0.04454587
## cotton_grass_cover_numeric 1.00000000 -0.10448530
## slope_numeric -0.10448530 1.00000000
## weather_numeric -0.01156971 -0.08551429
## peat_softness_numeric 0.21287824 -0.11293168
## surface_wetness_numeric 0.16407986 -0.17984354
## weather_numeric peat_softness_numeric
## heather_cover_numeric 0.07600996 -0.01587995
## molinia_cover_numeric -0.07149265 -0.14921731
## sphagnum_cover_numeric 0.10597824 0.15181648
## bare_ground_cover_numeric -0.06017348 0.14157819
## cotton_grass_cover_numeric -0.01156971 0.21287824
## slope_numeric -0.08551429 -0.11293168
## weather_numeric 1.00000000 0.13266214
## peat_softness_numeric 0.13266214 1.00000000
## surface_wetness_numeric 0.12496660 0.45577059
## surface_wetness_numeric
## heather_cover_numeric 0.15611982
## molinia_cover_numeric -0.14320737
## sphagnum_cover_numeric 0.15288368
## bare_ground_cover_numeric 0.08095347
## cotton_grass_cover_numeric 0.16407986
## slope_numeric -0.17984354
## weather_numeric 0.12496660
## peat_softness_numeric 0.45577059
## surface_wetness_numeric 1.00000000
mat <- cor(mydata)
corrplot(mat)
To summarise the above two correlograms … we are in the early stages of data collection (even though) it’s year five of surveying. there are some correlations emerging but these (to some) wouldn’t constitute any correlation at all due to the very low values we are currently dealing with. Cotton Grass ‘0.34’, Sphagnum ‘0.17’ and Bare Ground ‘0.39’ correlate with Peat Softness (and thus) Surface Wetness. Peat Softness and Surface Wetness are the obvious pairing with the highest natural correlation of ‘0.46’. Heather correlates with Surface Wetness at ‘0.17’.
# install.packages("ggpubr")
library("ggpubr")
heath_cover_table <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/heath_cover_table.csv")
ggscatter(heath_cover_table, x = "heather_cover_numeric", y = "peat_depth_average",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "heather_cover_numeric", ylab = "peat_depth_average")
# install.packages("ggpubr")
library("ggpubr")
molinia_cover_table <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/molinia_cover_table.csv")
ggscatter(molinia_cover_table, x = "molinia_cover_numeric", y = "peat_depth_average",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "molinia_cover_numeric", ylab = "peat_depth_average")
# install.packages("ggpubr")
library("ggpubr")
sphagnum_cover_table <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/sphagnum_cover_table.csv")
ggscatter(sphagnum_cover_table, x = "sphagnum_cover_numeric", y = "peat_depth_average",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "sphagnum_cover_numeric", ylab = "peat_depth_average")
# install.packages("ggpubr")
library("ggpubr")
bare_ground_cover_table <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/bare_ground_cover_table.csv")
ggscatter(bare_ground_cover_table, x = "bare_ground_cover_numeric", y = "peat_depth_average",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "bare_ground_cover_numeric", ylab = "peat_depth_average")
# install.packages("ggpubr")
library("ggpubr")
cotton_grass_cover_table <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/cotton_grass_cover_table.csv")
ggscatter(cotton_grass_cover_table, x = "cotton_grass_cover_numeric", y = "peat_depth_average",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "bare_ground_cover_numeric", ylab = "peat_depth_average")
# install.packages("ggpubr")
library("ggpubr")
bare_peat_cover_table <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/bare_peat_cover_table.csv")
ggscatter(bare_peat_cover_table, x = "bare_peat_cover_numeric", y = "peat_depth_average",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "spearman",
xlab = "bare_peat_cover_numeric", ylab = "peat_depth_average")
# install.packages("ggpubr")
library("ggpubr")
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
ggscatter(numeric_columns, x = "heather_cover_numeric", y = "peat_softness_numeric",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "heather_cover_numeric", ylab = "peat_softness_numeric")
# install.packages("ggpubr")
library("ggpubr")
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
ggscatter(numeric_columns, x = "heather_cover_numeric", y = "surface_wetness_numeric",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "heather_cover_numeric", ylab = "surface_wetness_numeric")
# install.packages("ggpubr")
library("ggpubr")
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
ggscatter(numeric_columns, x = "heather_cover_numeric", y = "weather_numeric",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "heather_cover_numeric", ylab = "weather_numeric")
# install.packages("ggpubr")
library("ggpubr")
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
ggscatter(numeric_columns, x = "heather_cover_numeric", y = "slope_numeric",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "heather_cover_numeric", ylab = "slope_numeric")
# install.packages("ggpubr")
library("ggpubr")
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
ggscatter(numeric_columns, x = "molinia_cover_numeric", y = "peat_softness_numeric",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "molinia_cover_numeric", ylab = "peat_softness_numeric")
# install.packages("ggpubr")
library("ggpubr")
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
ggscatter(numeric_columns, x = "molinia_cover_numeric", y = "surface_wetness_numeric",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "molinia_cover_numeric", ylab = "surface_wetness_numeric")
# install.packages("ggpubr")
library("ggpubr")
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
ggscatter(numeric_columns, x = "molinia_cover_numeric", y = "weather_numeric",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "molinia_cover_numeric", ylab = "weather_numeric")
# install.packages("ggpubr")
library("ggpubr")
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
ggscatter(numeric_columns, x = "molinia_cover_numeric", y = "slope_numeric",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "molinia_cover_numeric", ylab = "slope_numeric")
# install.packages("ggpubr")
library("ggpubr")
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
ggscatter(numeric_columns, x = "sphagnum_cover_numeric", y = "peat_softness_numeric",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "sphagnum_cover_numeric", ylab = "peat_softness_numeric")
# install.packages("ggpubr")
library("ggpubr")
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
ggscatter(numeric_columns, x = "sphagnum_cover_numeric", y = "surface_wetness_numeric",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "sphagnum_cover_numeric", ylab = "surface_wetness_numeric")
# install.packages("ggpubr")
library("ggpubr")
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
ggscatter(numeric_columns, x = "sphagnum_cover_numeric", y = "weather_numeric",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "sphagnum_cover_numeric", ylab = "weather_numeric")
# install.packages("ggpubr")
library("ggpubr")
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
ggscatter(numeric_columns, x = "sphagnum_cover_numeric", y = "slope_numeric",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "sphagnum_cover_numeric", ylab = "slope_numeric")
# install.packages("ggpubr")
library("ggpubr")
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
ggscatter(numeric_columns, x = "bare_ground_cover_numeric", y = "peat_softness_numeric",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "bare_ground_cover_numeric", ylab = "peat_softness_numeric")
# install.packages("ggpubr")
library("ggpubr")
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
ggscatter(numeric_columns, x = "sphagnum_cover_numeric", y = "surface_wetness_numeric",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "bare_ground_cover_numeric", ylab = "surface_wetness_numeric")
# install.packages("ggpubr")
library("ggpubr")
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
ggscatter(numeric_columns, x = "sphagnum_cover_numeric", y = "weather_numeric",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "bare_ground_cover_numeric", ylab = "weather_numeric")
# install.packages("ggpubr")
library("ggpubr")
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
ggscatter(numeric_columns, x = "sphagnum_cover_numeric", y = "slope_numeric",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "bare_ground_cover_numeric", ylab = "slope_numeric")
# install.packages("ggpubr")
library("ggpubr")
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
ggscatter(numeric_columns, x = "cotton_grass_cover_numeric", y = "peat_softness_numeric",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "cotton_grass_cover_numeric", ylab = "peat_softness_numeric")
# install.packages("ggpubr")
library("ggpubr")
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
ggscatter(numeric_columns, x = "cotton_grass_cover_numeric", y = "surface_wetness_numeric",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "cotton_grass_cover_numeric", ylab = "surface_wetness_numeric")
# install.packages("ggpubr")
library("ggpubr")
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
ggscatter(numeric_columns, x = "cotton_grass_cover_numeric", y = "weather_numeric",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "cotton_grass_cover_numeric", ylab = "weather_numeric")
# install.packages("ggpubr")
library("ggpubr")
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
ggscatter(numeric_columns, x = "cotton_grass_cover_numeric", y = "slope_numeric",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "cotton_grass_cover_numeric", ylab = "slope_numeric")
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
hist(numeric_columns$heather_cover_numeric)
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
hist(numeric_columns$molinia_cover_numeric)
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
hist(numeric_columns$sphagnum_cover_numeric)
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
hist(numeric_columns$bare_ground_cover_numeric)
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
hist(numeric_columns$cotton_grass_cover_numeric)
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
hist(numeric_columns$slope_numeric)
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
hist(numeric_columns$weather_numeric)
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
hist(numeric_columns$peat_softness_numeric)
numeric_columns <- read.csv("C:/Users/paulsh/Downloads/refactored_peatland_analysis_layers_2021_2024/numeric_columns.csv")
hist(numeric_columns$surface_wetness_numeric)