Data Attrition

## [1] "Original dataset has 368 rows"
##                                Condition Rows_Remaining Rows_Discarded
## 1                      2. Do not consent            357             11
## 2                3. Tech_screener failed            333             24
## 3                       4. Not in the US            333              0
## 4                          5. Not Female            322             11
## 5 6. Use cream less than 3 times a week             273             49
## 6                7. Fail attention check            272              1
## 7                                  TOTAL            272             96
## [1] "Percentage of records kept: 73.91 %"
## [1] "Percentage of records discarded: 26.09 %"
## [1] "Final filtered dataset (df_cp) dimensions: 272 rows x 74 columns"

Those who didn’t do shopping task - thus do not procced to claim question

Survey - product choice

##                                        Column Non_NA_Count Percent_Complete
## age...22                             age...22          201           100.00
## use_frequency                   use_frequency          201           100.00
## edu                                       edu          201           100.00
## race...51                           race...51          201           100.00
## income                                 income          201           100.00
## employ                                 employ          201           100.00
## purchase_frequency         purchase_frequency          201           100.00
## purchase_amount               purchase_amount          201           100.00
## importance                         importance          201           100.00
## participantId                   participantId          201           100.00
## Mec_benchmark_1               Mec_benchmark_1           34            16.92
## Mec_study_effet_a_1       Mec_study_effet_a_1           18             8.96
## disclaimer_1_b_1             disclaimer_1_b_1           18             8.96
## Mec_clinical_study_b_1 Mec_clinical_study_b_1           17             8.46
## disclaimer_2_b_1             disclaimer_2_b_1           17             8.46
## disclaimer_3_a_1             disclaimer_3_a_1           17             8.46
## disclaimer_3_b_1             disclaimer_3_b_1           17             8.46
## Mec_clinical_study_a_1 Mec_clinical_study_a_1           16             7.96
## disclaimer_1_a_1             disclaimer_1_a_1           16             7.96
## disclaimer_2_a_1             disclaimer_2_a_1           16             7.96
## Mec_study_effet_b_1       Mec_study_effet_b_1           15             7.46

The proportion that choose 1

## [1] "Proportions of Value = 1 with 95% Confidence Intervals:"
##                   Column Proportion Count Total         SE  CI_Lower  CI_Upper
## 1        Mec_benchmark_1  0.5588235    19    34 0.08515380 0.3919221 0.7257250
## 2    Mec_study_effet_b_1  0.4666667     7    15 0.12881224 0.2141947 0.7191387
## 3 Mec_clinical_study_b_1  0.7058824    12    17 0.11051017 0.4892824 0.9224823
## 4       disclaimer_1_b_1  0.8333333    15    18 0.08784105 0.6611649 1.0000000
## 5       disclaimer_2_b_1  0.8235294    14    17 0.09245944 0.6423089 1.0000000
## 6       disclaimer_3_b_1  0.7647059    13    17 0.10287937 0.5630623 0.9663494

## Power analysis to detect difference between:
##  - Mec_benchmark_1 (p1 = 0.559)
##  - Mec_study_effet_b_1 (p2 = 0.467)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 460.6045
##              p1 = 0.5588235
##              p2 = 0.4666667
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_benchmark_1 (p1 = 0.559)
##  - Mec_clinical_study_b_1 (p2 = 0.706)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 167.5671
##              p1 = 0.5588235
##              p2 = 0.7058824
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_benchmark_1 (p1 = 0.559)
##  - disclaimer_1_b_1 (p2 = 0.833)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 42.87169
##              p1 = 0.5588235
##              p2 = 0.8333333
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_study_effet_b_1 (p1 = 0.467)
##  - Mec_clinical_study_b_1 (p2 = 0.706)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 65.34682
##              p1 = 0.4666667
##              p2 = 0.7058824
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_clinical_study_b_1 (p1 = 0.706)
##  - disclaimer_1_b_1 (p2 = 0.833)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 170.168
##              p1 = 0.7058824
##              p2 = 0.8333333
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_clinical_study_b_1 (p1 = 0.706)
##  - disclaimer_2_b_1 (p2 = 0.824)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 202.8879
##              p1 = 0.7058824
##              p2 = 0.8235294
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_clinical_study_b_1 (p1 = 0.706)
##  - disclaimer_3_b_1 (p2 = 0.765)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 881.8191
##              p1 = 0.7058824
##              p2 = 0.7647059
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group

The proportion that choose 2

## [1] "Proportions of Value = 2 with 95% Confidence Intervals:"
##                   Column Proportion Count Total         SE  CI_Lower  CI_Upper
## 1        Mec_benchmark_1  0.4411765    15    34 0.08515380 0.2742750 0.6080779
## 2    Mec_study_effet_a_1  0.6666667    12    18 0.11111111 0.4488889 0.8844444
## 3 Mec_clinical_study_a_1  0.6875000    11    16 0.11587810 0.4603789 0.9146211
## 4       disclaimer_1_a_1  0.7500000    12    16 0.10825318 0.5378238 0.9621762
## 5       disclaimer_2_a_1  0.6250000    10    16 0.12103073 0.3877798 0.8622202
## 6       disclaimer_3_a_1  0.8235294    14    17 0.09245944 0.6423089 1.0000000

## Power analysis to detect difference between:
##  - Mec_benchmark_1 (p1 = 0.441)
##  - Mec_study_effet_a_1 (p2 = 0.667)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 75.09565
##              p1 = 0.4411765
##              p2 = 0.6666667
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_benchmark_1 (p1 = 0.441)
##  - Mec_clinical_study_a_1 (p2 = 0.688)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 62.41638
##              p1 = 0.4411765
##              p2 = 0.6875
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_benchmark_1 (p1 = 0.441)
##  - disclaimer_1_a_1 (p2 = 0.750)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 38.44443
##              p1 = 0.4411765
##              p2 = 0.75
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_study_effet_a_1 (p1 = 0.667)
##  - Mec_clinical_study_a_1 (p2 = 0.688)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 7906.567
##              p1 = 0.6666667
##              p2 = 0.6875
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_clinical_study_a_1 (p1 = 0.688)
##  - disclaimer_1_a_1 (p2 = 0.750)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 811.1791
##              p1 = 0.6875
##              p2 = 0.75
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_clinical_study_a_1 (p1 = 0.688)
##  - disclaimer_2_a_1 (p2 = 0.625)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 905.3658
##              p1 = 0.6875
##              p2 = 0.625
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_clinical_study_a_1 (p1 = 0.688)
##  - disclaimer_3_a_1 (p2 = 0.824)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 155.5154
##              p1 = 0.6875
##              p2 = 0.8235294
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group

Combine both

##                Column Proportion         SE  CI_Lower  CI_Upper Count Total               Label
## 1           Benchmark  0.5588235 0.08515380 0.3919221 0.7257250    19    34           Benchmark
## 2     Mec_study_effet  0.5757576 0.08603396 0.4071310 0.7443841    19    33               Study
## 3  Mec_clinical_study  0.6969697 0.08000056 0.5401686 0.8537708    23    33      Clinical Study
## 4 disclaimer_clinical  0.7941176 0.06934458 0.6582023 0.9300330    27    34 Clinical Disclaimer
## 5   disclaimer_degree  0.7272727 0.07752753 0.5753188 0.8792267    24    33   Degree Disclaimer
## 6 disclaimer_consumer  0.7941176 0.06934458 0.6582023 0.9300330    27    34 Consumer Disclaimer

## Power analysis to detect difference between:
##  - Benchmark (p1 = 0.559)
##  - Mec_study_effet (p2 = 0.576)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 13436.31
##              p1 = 0.5588235
##              p2 = 0.5757576
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Benchmark (p1 = 0.559)
##  - Mec_clinical_study (p2 = 0.697)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 190.9984
##              p1 = 0.5588235
##              p2 = 0.6969697
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Benchmark (p1 = 0.559)
##  - disclaimer_clinical (p2 = 0.794)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 60.86281
##              p1 = 0.5588235
##              p2 = 0.7941176
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_study_effet (p1 = 0.576)
##  - Mec_clinical_study (p2 = 0.697)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 246.0575
##              p1 = 0.5757576
##              p2 = 0.6969697
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_clinical_study (p1 = 0.697)
##  - disclaimer_clinical (p2 = 0.794)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 314.3602
##              p1 = 0.6969697
##              p2 = 0.7941176
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_clinical_study (p1 = 0.697)
##  - disclaimer_degree (p2 = 0.727)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 3503.346
##              p1 = 0.6969697
##              p2 = 0.7272727
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_clinical_study (p1 = 0.697)
##  - disclaimer_consumer (p2 = 0.794)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 314.3602
##              p1 = 0.6969697
##              p2 = 0.7941176
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group

Claim credibility

## [1] "Mean values with 95% confidence intervals:"
##                 Column     Mean       SD        SE CI_Lower CI_Upper   n
## 1      claim_benchmark 4.791045 1.471774 0.1038110 4.587575 4.994514 201
## 2       Original claim 4.750000 1.414214 0.2500000 4.260000 5.240000  32
## 3  Consumer perception 4.878788 1.268798 0.2208694 4.445884 5.311692  33
## 4           High price 4.764706 1.102582 0.1890912 4.394087 5.135325  34
## 5            Low price 5.029412 1.058452 0.1815230 4.673627 5.385197  34
## 6 Smaller participants 4.705882 1.291685 0.2215221 4.271699 5.140066  34
## 7  Big efficacy number 5.235294 1.518748 0.2604631 4.724786 5.745802  34

Consensus and magnitude confusion

## [1] "Mean values with 95% confidence intervals for confidence degree variables:"
##            Column     Mean       SD         SE CI_Lower CI_Upper   n
## 1 Con-degree-high 2.949495 1.053408 0.10587147 2.741987 3.157003  99
## 2  Con-degree-low 2.598039 0.925543 0.09164241 2.418420 2.777658 102

## Basic statistics:
## Con-degree-high: Mean = 2.949495 , SD = 1.053408 , n = 99
## Con-degree-low: Mean = 2.598039 , SD = 0.925543 , n = 102
## Difference (high - low): 0.3514557
## One-sided t-test (Con-degree-high > Con-degree-low):
## 
##  Welch Two Sample t-test
## 
## data:  high_confidence and low_confidence
## t = 2.5099, df = 194.13, p-value = 0.006446
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
##  0.1200301       Inf
## sample estimates:
## mean of x mean of y 
##  2.949495  2.598039
## 
## Hypothesis Test Summary:
## -------------------------
## Null Hypothesis: Mean of Con-degree-high is less than or equal to mean of Con-degree-low
## Alternative Hypothesis: Mean of Con-degree-high is greater than mean of Con-degree-low
## Test statistic (t): 2.51
## Degrees of freedom: 194.127
## p-value: 0.006446
## Decision: Reject the null hypothesis at the 0.05 significance level.
## Conclusion: There is sufficient evidence to conclude that the mean of Con-degree-high
## is significantly greater than the mean of Con-degree-low.
## 
## Effect size (Cohen's d): 0.355
## Interpretation: Medium effect size