In this lesson students will learn to:
These data were put together from NBA and WNBA records for the 2022-2023 and 2022 seasons, respecitively.
For this activity we are going to pretend that we are doing a survey on professional basketball players. These data represent only the raw responses to the survey. These data reflect a subset of the NBA and WNBA 2022 population who respondend to the hypothetical survey. Note that survey weights have been created to adjust for nonresponse.
Download the data here:
## DOWNLOAD COMPLETE SURVEY DATA
bballComp<-read.csv("https://raw.githubusercontent.com/kitadasmalley/Teaching/refs/heads/main/DATA429_599/CODE/bballSampComplete.csv")
str(bballComp)
## 'data.frame': 120 obs. of 31 variables:
## $ Player : chr "LeBron James" "Bradley Beal" "Damian Lillard" "Kyrie Irving" ...
## $ League : chr "NBA" "NBA" "NBA" "NBA" ...
## $ Age : int 38 29 32 30 24 25 25 25 32 37 ...
## $ wi_star : num 5.7 5.7 5.7 5.7 5.7 ...
## $ Salary : num 44474988 43279250 42492492 38917057 37096500 ...
## $ SimpPos : chr "F" "G" "G" "G" ...
## $ PTS : num 28.9 23.2 32.2 27.1 26.2 20 20.4 25 14.7 13.9 ...
## $ GP : int 55 50 58 60 73 65 75 73 50 59 ...
## $ GS : int 54 50 58 60 73 65 75 73 50 59 ...
## $ MP : num 35.5 33.5 36.3 37.4 34.8 32.8 34.6 33.4 31.5 32 ...
## $ FG : num 11.1 8.9 9.6 9.9 8.2 7.3 8 9.3 5.5 5 ...
## $ FGA : num 22.2 17.6 20.7 20.1 19 16 14.9 18.2 11.6 11.3 ...
## $ FGP : num 0.5 0.506 0.463 0.494 0.429 0.454 0.54 0.512 0.475 0.44 ...
## $ X3P : num 2.2 1.6 4.2 3.1 2.1 2.6 0 1.6 1 1.7 ...
## $ X3PA : num 6.9 4.4 11.3 8.3 6.3 6.6 0.2 5 3.2 4.4 ...
## $ X3PP : num 0.321 0.365 0.371 0.379 0.335 0.398 0.083 0.324 0.325 0.375 ...
## $ X2P : num 8.9 7.3 5.4 6.8 6.1 4.6 8 7.7 4.5 3.3 ...
## $ X2PA : num 15.3 13.2 9.4 11.8 12.7 9.4 14.7 13.2 8.4 6.9 ...
## $ X2PP : num 0.58 0.552 0.574 0.574 0.476 0.494 0.545 0.584 0.532 0.482 ...
## $ FT : num 4.6 3.8 8.8 4.1 7.8 2.8 4.3 4.7 2.6 2.3 ...
## $ FTA : num 5.9 4.6 9.6 4.6 8.8 3.3 5.4 6 3.2 2.7 ...
## $ FTP : num 0.768 0.842 0.914 0.905 0.886 0.833 0.806 0.78 0.811 0.831 ...
## $ ORB : num 1.2 0.8 0.8 1 0.8 0.7 2.5 0.5 0.7 0.5 ...
## $ DRB : num 7.1 3.1 4 4.1 2.2 3.2 6.7 3.6 3.6 3.8 ...
## $ TRB : num 8.3 3.9 4.8 5.1 3 4 9.2 4.2 4.3 4.3 ...
## $ AST : num 6.8 5.4 7.3 5.5 10.2 6.2 3.2 6.1 4.1 8.9 ...
## $ STL : num 0.9 0.9 0.9 1.1 1.1 1 1.2 1.1 0.8 1.5 ...
## $ BLK : num 0.6 0.7 0.3 0.8 0.1 0.2 0.8 0.3 0.2 0.4 ...
## $ TOV : num 3.2 2.9 3.3 2.1 4.1 2.2 2.5 2.5 2 1.9 ...
## $ PF : num 1.6 2.1 1.9 2.8 1.4 1.6 2.8 2.4 1.4 2.1 ...
## $ fpcBball: int 635 635 635 635 635 635 635 635 635 635 ...
Load in survey packages.
#### SURVEY PACKAGES
#install.packages("survey")
#install.packages("srvyr")
library(tidyverse)
library(survey)
library(srvyr)
The new ‘srvyr’ package utilizes the ‘tidyverse’ syntax.
First, we must define a survey design object by mapping to the column with the final weights. The fpc argument tells R that the sample is finite and without replacement. This should be one number that denotes how large the sampling frame is.
### SURVEY DESIGN OBJECT
bball_des<- bballComp %>%
as_survey_design(
weights = wi_star, #WEIGHTS
fpc = fpcBball # WITHOUT REPLACEMENT
)
bball_des
## Independent Sampling design
## Called via srvyr
## Sampling variables:
## - ids: `1`
## - fpc: fpcBball
## - weights: wi_star
## Data variables:
## - Player (chr), League (chr), Age (int), wi_star (dbl), Salary (dbl), SimpPos
## (chr), PTS (dbl), GP (int), GS (int), MP (dbl), FG (dbl), FGA (dbl), FGP
## (dbl), X3P (dbl), X3PA (dbl), X3PP (dbl), X2P (dbl), X2PA (dbl), X2PP
## (dbl), FT (dbl), FTA (dbl), FTP (dbl), ORB (dbl), DRB (dbl), TRB (dbl), AST
## (dbl), STL (dbl), BLK (dbl), TOV (dbl), PF (dbl), fpcBball (int)
Weighted graphics
### WEIGHTED GRAPHIC
ggplot(bballComp, aes(x = FGP,
y = ..density..,
weight = wi_star)) +
geom_histogram()
## Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
## ℹ Please use `after_stat(density)` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
### MEANS AND SE AND CI
bball_des %>%
summarize(fgp = survey_mean(FGP,
vartype = c("se", "ci")
))
## # A tibble: 1 × 4
## fgp fgp_se fgp_low fgp_upp
## <dbl> <dbl> <dbl> <dbl>
## 1 0.448 0.0106 0.427 0.469
Let’s confirm our weighted estimate:
### CONFIRM
## POINT EST
num<-sum(bballComp$wi_star*bballComp$FGP)
den<-sum(bballComp$wi_star)
num/den ### CHECKS OUT
## [1] 0.4480058
### COMPARE TO UNWEIGHTED
mean(bballComp$FGP)
## [1] 0.4463667
Is the average field goal percent for professional basketball players in the 2022 season \(50\%\)?
## ONE T-TEST
### FGP
ttest1 <- bball_des %>%
svyttest(
formula = FGP -.50 ~ 0,
design = .,
na.rm = TRUE
)
ttest1
##
## Design-based one-sample t-test
##
## data: FGP - 0.5 ~ 0
## t = -4.9075, df = 118, p-value = 2.987e-06
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -0.07297488 -0.03101358
## sample estimates:
## mean
## -0.05199423
## BACK TRANSFROM
ttest1$estimate +.5
## mean
## 0.4480058
Is the average field goal percent for professional basketball players in the 2022 season different for NBA and WNBA?
## TWO T-TEST
ttest2 <- bball_des %>%
svyttest(
formula = FGP ~ League,
design = .,
na.rm = TRUE
)
ttest2
##
## Design-based t-test
##
## data: FGP ~ League
## t = -1.6185, df = 118, p-value = 0.1082
## alternative hypothesis: true difference in mean is not equal to 0
## 95 percent confidence interval:
## -0.069954405 0.007032711
## sample estimates:
## difference in mean
## -0.03146085
Although the average field goal percentage (FGP) is not \(50\%\), there are still some professional basketball players who have an FGP that is greater than \(50\%\). How many are there?
### PROPORTION FGP>50%
bball_des %>%
mutate(FGP50=(FGP>.50))%>%
group_by(FGP50)%>%
summarize(p = survey_prop())
## When `proportion` is unspecified, `survey_prop()` now defaults to `proportion = TRUE`.
## ℹ This should improve confidence interval coverage.
## This message is displayed once per session.
## # A tibble: 2 × 3
## FGP50 p p_se
## <lgl> <dbl> <dbl>
## 1 FALSE 0.756 0.0358
## 2 TRUE 0.244 0.0358
Suppose that you had a friend who was a big basketball fan and they claimed that \(10\%\) percent of players with a FGP greater than \(50\%\). Do we have evidence to support that?
### ONE SAMPLE PROP
ttest_prop1 <- bball_des %>%
svyttest(
formula = (FGP>.50) - 0.10 ~ 0,
design = .,
na.rm = TRUE
)
ttest_prop1
##
## Design-based one-sample t-test
##
## data: (FGP > 0.5) - 0.1 ~ 0
## t = 4.0252, df = 118, p-value = 0.000101
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 0.07317746 0.21490437
## sample estimates:
## mean
## 0.1440409
## BACK TRANSFROM
ttest_prop1$estimate +.1
## mean
## 0.2440409
A filled bar graph is useful for visualizing differences, while conditioning in the subgroups.
### BAR GRAPH : COMPARE LEAGUES
## WEIGHTED
bballComp%>%
mutate(FGP50=(FGP>.50))%>%
ggplot(aes(x=League, y=wi_star, fill=FGP50))+
geom_bar(stat="identity", position = "fill")+
ggtitle("Weighted Sample Proportions")
Now let’s compare the proportions across the two leagues.
### TABLE
### PROPORTION FGP>50%
### COMPARE NBA and WNBA
bball_des %>%
mutate(FGP50=(FGP>.50))%>%
group_by(League, FGP50)%>% # ORDER MATTERS HERE BECAUSE IT CONSITIONS ON THE FIRST
summarize(p = survey_prop())
## # A tibble: 4 × 4
## # Groups: League [2]
## League FGP50 p p_se
## <chr> <lgl> <dbl> <dbl>
## 1 NBA FALSE 0.744 0.0436
## 2 NBA TRUE 0.256 0.0436
## 3 WNBA FALSE 0.789 0.0598
## 4 WNBA TRUE 0.211 0.0598
It looks like there is a difference in point estimates, is this significant?
### PROP NBA VS WNBA
### TWO SAMPLE PROP
ttest_prop2 <- bball_des %>%
mutate(FGP50=(FGP>.50))%>%
svyttest(
formula = FGP50 ~ League,
design = .,
na.rm = TRUE
)
ttest_prop2
##
## Design-based t-test
##
## data: FGP50 ~ League
## t = -0.61576, df = 118, p-value = 0.5392
## alternative hypothesis: true difference in mean is not equal to 0
## 95 percent confidence interval:
## -0.1921271 0.1009846
## sample estimates:
## difference in mean
## -0.04557125
We can also look at position:
### COMPARE POSITIONS
bballComp%>%
mutate(FGP50=(FGP>.50))%>%
ggplot(aes(x=SimpPos, y=wi_star, fill=FGP50))+
geom_bar(stat="identity", position = "fill")+
ggtitle("Weighted Sample Proportions")
Now make a table:
### TABLE
### PROPORTION FGP>50%
### COMPARE SimpPos
bball_des %>%
mutate(FGP50=(FGP>.50))%>%
group_by(SimpPos, FGP50)%>% # ORDER MATTERS HERE BECAUSE IT CONSITIONS ON THE FIRST
summarize(p = survey_prop())
## # A tibble: 6 × 4
## # Groups: SimpPos [3]
## SimpPos FGP50 p p_se
## <chr> <lgl> <dbl> <dbl>
## 1 C FALSE 0.406 0.0859
## 2 C TRUE 0.594 0.0859
## 3 F FALSE 0.906 0.0407
## 4 F TRUE 0.0942 0.0407
## 5 G FALSE 0.819 0.0497
## 6 G TRUE 0.181 0.0497
It looks like there is a difference in point estimates, is this significant?
We can make a table for this
#install.packages("gt")
library(gt)
### TABLE
chi_CI <- bball_des %>%
mutate(FGP50=(FGP>.50))%>%
group_by(SimpPos, FGP50) %>%
summarize(Observed = round(survey_mean(vartype = "ci"), 3))
chi_CI
## # A tibble: 6 × 5
## # Groups: SimpPos [3]
## SimpPos FGP50 Observed Observed_low Observed_upp
## <chr> <lgl> <dbl> <dbl> <dbl>
## 1 C FALSE 0.406 0.236 0.576
## 2 C TRUE 0.594 0.424 0.764
## 3 F FALSE 0.906 0.825 0.986
## 4 F TRUE 0.094 0.014 0.175
## 5 G FALSE 0.819 0.72 0.917
## 6 G TRUE 0.181 0.083 0.28
### FORMAT INTO TABLE
chi_CI_tab <- chi_CI %>%
mutate(prop = paste0(
Observed, " (", Observed_low, ", ",
Observed_upp, ")"
)) %>%
select(FGP50, SimpPos, prop) %>%
pivot_wider(
names_from = SimpPos,
values_from = prop
) %>%
gt(rowname_col = "SimpPos")%>%
tab_stubhead(label = "SimpPos")
chi_CI_tab
FGP50 | C | F | G |
---|---|---|---|
FALSE | 0.406 (0.236, 0.576) | 0.906 (0.825, 0.986) | 0.819 (0.72, 0.917) |
TRUE | 0.594 (0.424, 0.764) | 0.094 (0.014, 0.175) | 0.181 (0.083, 0.28) |
We could also do a chi-squared test of homogeneity:
### CHI SQR
### LEAGUE vs FGP50
chiSq <- bball_des %>%
mutate(FGP50=(FGP>.50))%>%
svychisq(
formula = ~ FGP50 + SimpPos ,
design = .,
statistic = "Chisq",
na.rm = TRUE
)
chiSq
##
## Pearson's X^2: Rao & Scott adjustment
##
## data: NextMethod()
## X-squared = 24.473, df = 2, p-value = 4.25e-07