a <- master %>% mutate(time_cate=case_when(time_to_cre<=365 ~ "<1 year",
time_to_cre>365 & time_to_cre<=365*2 ~ "1-2 year",
time_to_cre>365*2 & time_to_cre<=365*3 ~ "2-3 year"))
summary_df <- a %>%
group_by(time_cate) %>%
summarise(mean_post_egfr = mean(post_egfr, na.rm = TRUE)) %>%
arrange(factor(time_cate, levels = c("1 year", "1-2 year", "2-3 year")))
# Step 3: Plot
ggplot(summary_df, aes(x = time_cate, y = mean_post_egfr)) +
geom_col(fill = "steelblue") +
labs(
title = "Mean post_egfr by Time Category",
x = "Time Category",
y = "Mean post_egfr"
) +
theme_minimal()

survival_3year cohort Model post_egfr ~ time_to_cre_year :
time_to_cre<=365*3
master_3year <- master %>% filter(time_to_cre<=365*3,survival_3year==1)
model <- lmer(post_egfr ~ time_to_cre_year + (1 | EMPI), data = master_3year)
model %>% tbl_regression( exponentiate = FALSE) %>% add_n()
Characteristic |
N |
Beta |
95% CI |
time_to_cre_year |
21,183 |
-2.1 |
-2.3, -1.9 |
survival_3year cohort Model post_egfr ~ time_to_cre_year :
time_to_cre<=365
master_3year <- master %>% filter(time_to_cre<=365,survival_3year==1)
model <- lmer(post_egfr ~ time_to_cre_year + (1 | EMPI), data = master_3year)
model %>% tbl_regression( exponentiate = FALSE) %>% add_n()
Characteristic |
N |
Beta |
95% CI |
time_to_cre_year |
9,219 |
-4.9 |
-5.6, -4.3 |
Table 1 survival_3year
|
Overall (N=353) |
Race |
|
Asian |
15 (4.2%) |
Black |
18 (5.1%) |
Other/Unknown |
17 (4.8%) |
White |
303 (85.8%) |
Ethnic_Group |
|
Hispanic |
1 (0.3%) |
Non_hispanic |
330 (93.5%) |
Other |
22 (6.2%) |
male |
|
0 |
155 (43.9%) |
1 |
198 (56.1%) |
diu |
|
0 |
102 (28.9%) |
1 |
251 (71.1%) |
ace_arb |
|
0 |
81 (22.9%) |
1 |
272 (77.1%) |
esrd_kt |
|
0 |
307 (87.0%) |
1 |
46 (13.0%) |
dm |
|
1 |
353 (100%) |
htn |
|
0 |
37 (10.5%) |
1 |
316 (89.5%) |
ppi |
|
0 |
79 (22.4%) |
1 |
274 (77.6%) |
steroids |
|
0 |
49 (13.9%) |
1 |
304 (86.1%) |
smoking |
|
0 |
137 (38.8%) |
1 |
216 (61.2%) |
cad |
|
0 |
210 (59.5%) |
1 |
143 (40.5%) |
ICI_Name_clean |
|
Atezolizumab |
28 (7.9%) |
Avelumab |
10 (2.8%) |
Cemiplimab |
7 (2.0%) |
Dostarlimab |
0 (0%) |
Durvalumab |
16 (4.5%) |
Ipilimumab |
4 (1.1%) |
Ipilimumab + Nivolumab |
49 (13.9%) |
Nivolumab |
61 (17.3%) |
Nivolumab + Relatlimab |
0 (0%) |
Pembrolizumab |
178 (50.4%) |
ckd_stage_baseline |
|
Stage 1 |
123 (34.8%) |
Stage 2 |
153 (43.3%) |
Stage 3a |
56 (15.9%) |
Stage 3b |
18 (5.1%) |
Stage 4 |
3 (0.8%) |
ckd_stage_median |
|
Stage 1 |
130 (36.8%) |
Stage 2 |
150 (42.5%) |
Stage 3a |
52 (14.7%) |
Stage 3b |
17 (4.8%) |
Stage 4 |
4 (1.1%) |
Stage 5 (Kidney Failure) |
0 (0%) |
age_baseline |
|
Mean (SD) |
67.1 (9.72) |
Median [Min, Max] |
67.4 [38.0, 91.9] |
pre_MALBCRE_365days |
|
Mean (SD) |
152 (420) |
Median [Min, Max] |
27.0 [2.60, 2350] |
Missing |
312 (88.4%) |
pre_CRE_180days |
|
Mean (SD) |
0.992 (0.339) |
Median [Min, Max] |
0.910 [0.450, 2.75] |
pre_HGB_180days |
|
Mean (SD) |
12.5 (1.79) |
Median [Min, Max] |
12.5 [7.20, 17.6] |
pre_ALB_180days |
|
Mean (SD) |
4.04 (0.419) |
Median [Min, Max] |
4.10 [1.80, 5.00] |
pre_PLT_180days |
|
Mean (SD) |
247 (94.9) |
Median [Min, Max] |
234 [73.0, 917] |
creatinine_median_365 |
|
Mean (SD) |
0.987 (0.333) |
Median [Min, Max] |
0.905 [0.470, 2.83] |
eGFR_cre_baseline |
|
Mean (SD) |
77.7 (20.7) |
Median [Min, Max] |
78.8 [23.3, 128] |
eGFR_cre_median |
|
Mean (SD) |
78.2 (20.3) |
Median [Min, Max] |
80.0 [22.5, 118] |
cre_doubling_3year |
|
0 |
315 (89.2%) |
1 |
38 (10.8%) |
survival_4year cohort Model post_egfr ~ time_to_cre_year :
time_to_cre<=365*4
master_4year <- master %>% filter(time_to_cre<=365*4,survival_4year==1)
model <- lmer(post_egfr ~ time_to_cre_year + (1 | EMPI), data = master_4year)
model %>% tbl_regression( exponentiate = FALSE) %>% add_n()
Characteristic |
N |
Beta |
95% CI |
time_to_cre_year |
16,325 |
-1.4 |
-1.5, -1.2 |
survival_4year cohort Model post_egfr ~ time_to_cre_year :
time_to_cre<=365
master_4year <- master %>% filter(time_to_cre<=365,survival_4year==1)
model <- lmer(post_egfr ~ time_to_cre_year + (1 | EMPI), data = master_4year)
model %>% tbl_regression( exponentiate = FALSE) %>% add_n()
Characteristic |
N |
Beta |
95% CI |
time_to_cre_year |
5,902 |
-5.6 |
-6.5, -4.8 |
Table 1 survival_4year
|
Overall (N=227) |
Race |
|
Asian |
6 (2.6%) |
Black |
10 (4.4%) |
Other/Unknown |
11 (4.8%) |
White |
200 (88.1%) |
Ethnic_Group |
|
Hispanic |
0 (0%) |
Non_hispanic |
209 (92.1%) |
Other |
18 (7.9%) |
male |
|
0 |
97 (42.7%) |
1 |
130 (57.3%) |
diu |
|
0 |
58 (25.6%) |
1 |
169 (74.4%) |
ace_arb |
|
0 |
53 (23.3%) |
1 |
174 (76.7%) |
esrd_kt |
|
0 |
196 (86.3%) |
1 |
31 (13.7%) |
dm |
|
1 |
227 (100%) |
htn |
|
0 |
26 (11.5%) |
1 |
201 (88.5%) |
ppi |
|
0 |
50 (22.0%) |
1 |
177 (78.0%) |
steroids |
|
0 |
30 (13.2%) |
1 |
197 (86.8%) |
smoking |
|
0 |
91 (40.1%) |
1 |
136 (59.9%) |
cad |
|
0 |
138 (60.8%) |
1 |
89 (39.2%) |
ICI_Name_clean |
|
Atezolizumab |
20 (8.8%) |
Avelumab |
7 (3.1%) |
Cemiplimab |
4 (1.8%) |
Dostarlimab |
0 (0%) |
Durvalumab |
8 (3.5%) |
Ipilimumab |
4 (1.8%) |
Ipilimumab + Nivolumab |
27 (11.9%) |
Nivolumab |
44 (19.4%) |
Nivolumab + Relatlimab |
0 (0%) |
Pembrolizumab |
113 (49.8%) |
ckd_stage_baseline |
|
Stage 1 |
78 (34.4%) |
Stage 2 |
101 (44.5%) |
Stage 3a |
36 (15.9%) |
Stage 3b |
10 (4.4%) |
Stage 4 |
2 (0.9%) |
ckd_stage_median |
|
Stage 1 |
78 (34.4%) |
Stage 2 |
102 (44.9%) |
Stage 3a |
34 (15.0%) |
Stage 3b |
10 (4.4%) |
Stage 4 |
3 (1.3%) |
Stage 5 (Kidney Failure) |
0 (0%) |
age_baseline |
|
Mean (SD) |
66.6 (9.78) |
Median [Min, Max] |
67.3 [38.0, 91.9] |
pre_MALBCRE_365days |
|
Mean (SD) |
184 (494) |
Median [Min, Max] |
22.6 [2.60, 2350] |
Missing |
198 (87.2%) |
pre_CRE_180days |
|
Mean (SD) |
1.00 (0.349) |
Median [Min, Max] |
0.920 [0.480, 2.75] |
pre_HGB_180days |
|
Mean (SD) |
12.6 (1.79) |
Median [Min, Max] |
12.6 [7.20, 17.6] |
pre_ALB_180days |
|
Mean (SD) |
4.05 (0.393) |
Median [Min, Max] |
4.10 [2.40, 5.00] |
pre_PLT_180days |
|
Mean (SD) |
242 (96.7) |
Median [Min, Max] |
229 [73.0, 917] |
creatinine_median_365 |
|
Mean (SD) |
0.996 (0.342) |
Median [Min, Max] |
0.930 [0.470, 2.83] |
eGFR_cre_baseline |
|
Mean (SD) |
77.3 (20.6) |
Median [Min, Max] |
77.0 [23.3, 115] |
eGFR_cre_median |
|
Mean (SD) |
78.1 (19.9) |
Median [Min, Max] |
79.2 [22.5, 112] |
cre_doubling_4year |
|
0 |
198 (87.2%) |
1 |
29 (12.8%) |
survival_5year cohort Model post_egfr ~ time_to_cre_year :
time_to_cre<=365*5
master_5year <- master %>% filter(time_to_cre<=365*5,survival_5year==1)
model <- lmer(post_egfr ~ time_to_cre_year + (1 | EMPI), data = master_5year)
model %>% tbl_regression( exponentiate = FALSE) %>% add_n()
Characteristic |
N |
Beta |
95% CI |
time_to_cre_year |
9,971 |
-1.2 |
-1.3, -1.1 |
survival_5year cohort Model post_egfr ~ time_to_cre_year :
time_to_cre<=365
master_5year <- master %>% filter(time_to_cre<=365,survival_5year==1)
model <- lmer(post_egfr ~ time_to_cre_year + (1 | EMPI), data = master_5year)
model %>% tbl_regression( exponentiate = FALSE) %>% add_n()
Characteristic |
N |
Beta |
95% CI |
time_to_cre_year |
3,396 |
-7.0 |
-8.1, -5.9 |
Table 1 survival_5year
|
Overall (N=129) |
Race |
|
Asian |
2 (1.6%) |
Black |
8 (6.2%) |
Other/Unknown |
8 (6.2%) |
White |
111 (86.0%) |
Ethnic_Group |
|
Hispanic |
0 (0%) |
Non_hispanic |
119 (92.2%) |
Other |
10 (7.8%) |
male |
|
0 |
57 (44.2%) |
1 |
72 (55.8%) |
diu |
|
0 |
33 (25.6%) |
1 |
96 (74.4%) |
ace_arb |
|
0 |
25 (19.4%) |
1 |
104 (80.6%) |
esrd_kt |
|
0 |
116 (89.9%) |
1 |
13 (10.1%) |
dm |
|
1 |
129 (100%) |
htn |
|
0 |
11 (8.5%) |
1 |
118 (91.5%) |
ppi |
|
0 |
27 (20.9%) |
1 |
102 (79.1%) |
steroids |
|
0 |
19 (14.7%) |
1 |
110 (85.3%) |
smoking |
|
0 |
52 (40.3%) |
1 |
77 (59.7%) |
cad |
|
0 |
82 (63.6%) |
1 |
47 (36.4%) |
ICI_Name_clean |
|
Atezolizumab |
15 (11.6%) |
Avelumab |
5 (3.9%) |
Cemiplimab |
1 (0.8%) |
Dostarlimab |
0 (0%) |
Durvalumab |
3 (2.3%) |
Ipilimumab |
1 (0.8%) |
Ipilimumab + Nivolumab |
11 (8.5%) |
Nivolumab |
29 (22.5%) |
Nivolumab + Relatlimab |
0 (0%) |
Pembrolizumab |
64 (49.6%) |
ckd_stage_baseline |
|
Stage 1 |
47 (36.4%) |
Stage 2 |
57 (44.2%) |
Stage 3a |
21 (16.3%) |
Stage 3b |
3 (2.3%) |
Stage 4 |
1 (0.8%) |
ckd_stage_median |
|
Stage 1 |
47 (36.4%) |
Stage 2 |
60 (46.5%) |
Stage 3a |
18 (14.0%) |
Stage 3b |
2 (1.6%) |
Stage 4 |
2 (1.6%) |
Stage 5 (Kidney Failure) |
0 (0%) |
age_baseline |
|
Mean (SD) |
66.2 (9.73) |
Median [Min, Max] |
65.8 [38.0, 87.7] |
pre_MALBCRE_365days |
|
Mean (SD) |
77.3 (140) |
Median [Min, Max] |
22.8 [2.60, 528] |
Missing |
115 (89.1%) |
pre_CRE_180days |
|
Mean (SD) |
0.986 (0.347) |
Median [Min, Max] |
0.910 [0.510, 2.75] |
pre_HGB_180days |
|
Mean (SD) |
12.4 (1.77) |
Median [Min, Max] |
12.6 [7.20, 16.8] |
pre_ALB_180days |
|
Mean (SD) |
4.03 (0.384) |
Median [Min, Max] |
4.00 [2.40, 5.00] |
pre_PLT_180days |
|
Mean (SD) |
241 (103) |
Median [Min, Max] |
229 [73.0, 917] |
creatinine_median_365 |
|
Mean (SD) |
0.974 (0.350) |
Median [Min, Max] |
0.900 [0.470, 2.83] |
eGFR_cre_baseline |
|
Mean (SD) |
78.6 (20.0) |
Median [Min, Max] |
78.2 [23.3, 115] |
eGFR_cre_median |
|
Mean (SD) |
79.9 (19.1) |
Median [Min, Max] |
79.5 [22.5, 112] |
cre_doubling_5year |
|
0 |
115 (89.1%) |
1 |
14 (10.9%) |
survival_6year cohort Model post_egfr ~ time_to_cre_year :
time_to_cre<=365*6
master_6year <- master %>% filter(time_to_cre<=365*6,survival_6year==1)
model <- lmer(post_egfr ~ time_to_cre_year + (1 | EMPI), data = master_6year)
model %>% tbl_regression( exponentiate = FALSE) %>% add_n()
Characteristic |
N |
Beta |
95% CI |
time_to_cre_year |
6,899 |
-0.85 |
-1.0, -0.71 |
survival_6year cohort Model post_egfr ~ time_to_cre_year :
time_to_cre<=365
master_6year <- master %>% filter(time_to_cre<=365,survival_6year==1)
model <- lmer(post_egfr ~ time_to_cre_year + (1 | EMPI), data = master_6year)
model %>% tbl_regression( exponentiate = FALSE) %>% add_n()
Characteristic |
N |
Beta |
95% CI |
time_to_cre_year |
2,127 |
-5.0 |
-6.2, -3.7 |
Table 1 survival_6year
|
Overall (N=82) |
Race |
|
Asian |
2 (2.4%) |
Black |
8 (9.8%) |
Other/Unknown |
4 (4.9%) |
White |
68 (82.9%) |
Ethnic_Group |
|
Hispanic |
0 (0%) |
Non_hispanic |
73 (89.0%) |
Other |
9 (11.0%) |
male |
|
0 |
32 (39.0%) |
1 |
50 (61.0%) |
diu |
|
0 |
24 (29.3%) |
1 |
58 (70.7%) |
ace_arb |
|
0 |
17 (20.7%) |
1 |
65 (79.3%) |
esrd_kt |
|
0 |
75 (91.5%) |
1 |
7 (8.5%) |
dm |
|
1 |
82 (100%) |
htn |
|
0 |
8 (9.8%) |
1 |
74 (90.2%) |
ppi |
|
0 |
18 (22.0%) |
1 |
64 (78.0%) |
steroids |
|
0 |
15 (18.3%) |
1 |
67 (81.7%) |
smoking |
|
0 |
36 (43.9%) |
1 |
46 (56.1%) |
cad |
|
0 |
53 (64.6%) |
1 |
29 (35.4%) |
ICI_Name_clean |
|
Atezolizumab |
11 (13.4%) |
Avelumab |
3 (3.7%) |
Cemiplimab |
0 (0%) |
Dostarlimab |
0 (0%) |
Durvalumab |
1 (1.2%) |
Ipilimumab |
1 (1.2%) |
Ipilimumab + Nivolumab |
6 (7.3%) |
Nivolumab |
16 (19.5%) |
Nivolumab + Relatlimab |
0 (0%) |
Pembrolizumab |
44 (53.7%) |
ckd_stage_baseline |
|
Stage 1 |
30 (36.6%) |
Stage 2 |
36 (43.9%) |
Stage 3a |
14 (17.1%) |
Stage 3b |
1 (1.2%) |
Stage 4 |
1 (1.2%) |
ckd_stage_median |
|
Stage 1 |
31 (37.8%) |
Stage 2 |
39 (47.6%) |
Stage 3a |
10 (12.2%) |
Stage 3b |
1 (1.2%) |
Stage 4 |
1 (1.2%) |
Stage 5 (Kidney Failure) |
0 (0%) |
age_baseline |
|
Mean (SD) |
66.2 (9.11) |
Median [Min, Max] |
65.3 [47.4, 87.7] |
pre_MALBCRE_365days |
|
Mean (SD) |
28.9 (30.0) |
Median [Min, Max] |
16.7 [2.60, 92.0] |
Missing |
72 (87.8%) |
pre_CRE_180days |
|
Mean (SD) |
1.00 (0.340) |
Median [Min, Max] |
0.945 [0.530, 2.75] |
pre_HGB_180days |
|
Mean (SD) |
12.4 (1.79) |
Median [Min, Max] |
12.6 [8.80, 16.8] |
pre_ALB_180days |
|
Mean (SD) |
4.00 (0.368) |
Median [Min, Max] |
4.00 [3.10, 4.80] |
pre_PLT_180days |
|
Mean (SD) |
244 (106) |
Median [Min, Max] |
228 [75.0, 917] |
creatinine_median_365 |
|
Mean (SD) |
0.981 (0.342) |
Median [Min, Max] |
0.900 [0.470, 2.83] |
eGFR_cre_baseline |
|
Mean (SD) |
78.4 (19.5) |
Median [Min, Max] |
77.1 [23.3, 112] |
eGFR_cre_median |
|
Mean (SD) |
80.3 (18.5) |
Median [Min, Max] |
82.0 [22.5, 109] |
cre_doubling_6year |
|
0 |
73 (89.0%) |
1 |
9 (11.0%) |
survival_7year cohort Model post_egfr ~ time_to_cre_year :
time_to_cre<=365*7
master_7year <- master %>% filter(time_to_cre<=365*7,survival_7year==1)
model <- lmer(post_egfr ~ time_to_cre_year + (1 | EMPI), data = master_7year)
model %>% tbl_regression( exponentiate = FALSE) %>% add_n()
Characteristic |
N |
Beta |
95% CI |
time_to_cre_year |
3,695 |
-1.8 |
-2.0, -1.7 |
survival_7year cohort Model post_egfr ~ time_to_cre_year :
time_to_cre<=365
master_7year <- master %>% filter(time_to_cre<=365,survival_7year==1)
model <- lmer(post_egfr ~ time_to_cre_year + (1 | EMPI), data = master_7year)
model %>% tbl_regression( exponentiate = FALSE) %>% add_n()
Characteristic |
N |
Beta |
95% CI |
time_to_cre_year |
1,175 |
-3.3 |
-5.0, -1.5 |
Table 1 survival_7year
|
Overall (N=45) |
Race |
|
Asian |
0 (0%) |
Black |
5 (11.1%) |
Other/Unknown |
2 (4.4%) |
White |
38 (84.4%) |
Ethnic_Group |
|
Hispanic |
0 (0%) |
Non_hispanic |
39 (86.7%) |
Other |
6 (13.3%) |
male |
|
0 |
16 (35.6%) |
1 |
29 (64.4%) |
diu |
|
0 |
13 (28.9%) |
1 |
32 (71.1%) |
ace_arb |
|
0 |
8 (17.8%) |
1 |
37 (82.2%) |
esrd_kt |
|
0 |
43 (95.6%) |
1 |
2 (4.4%) |
dm |
|
1 |
45 (100%) |
htn |
|
0 |
2 (4.4%) |
1 |
43 (95.6%) |
ppi |
|
0 |
9 (20.0%) |
1 |
36 (80.0%) |
steroids |
|
0 |
9 (20.0%) |
1 |
36 (80.0%) |
smoking |
|
0 |
18 (40.0%) |
1 |
27 (60.0%) |
cad |
|
0 |
30 (66.7%) |
1 |
15 (33.3%) |
ICI_Name_clean |
|
Atezolizumab |
6 (13.3%) |
Avelumab |
3 (6.7%) |
Cemiplimab |
0 (0%) |
Dostarlimab |
0 (0%) |
Durvalumab |
0 (0%) |
Ipilimumab |
1 (2.2%) |
Ipilimumab + Nivolumab |
4 (8.9%) |
Nivolumab |
10 (22.2%) |
Nivolumab + Relatlimab |
0 (0%) |
Pembrolizumab |
21 (46.7%) |
ckd_stage_baseline |
|
Stage 1 |
16 (35.6%) |
Stage 2 |
20 (44.4%) |
Stage 3a |
8 (17.8%) |
Stage 3b |
1 (2.2%) |
Stage 4 |
0 (0%) |
ckd_stage_median |
|
Stage 1 |
17 (37.8%) |
Stage 2 |
20 (44.4%) |
Stage 3a |
7 (15.6%) |
Stage 3b |
1 (2.2%) |
Stage 4 |
0 (0%) |
Stage 5 (Kidney Failure) |
0 (0%) |
age_baseline |
|
Mean (SD) |
65.2 (8.76) |
Median [Min, Max] |
65.2 [47.4, 79.4] |
pre_MALBCRE_365days |
|
Mean (SD) |
24.6 (28.8) |
Median [Min, Max] |
13.3 [2.60, 92.0] |
Missing |
37 (82.2%) |
pre_CRE_180days |
|
Mean (SD) |
0.998 (0.286) |
Median [Min, Max] |
0.960 [0.570, 1.93] |
pre_HGB_180days |
|
Mean (SD) |
12.1 (1.84) |
Median [Min, Max] |
11.9 [9.20, 16.1] |
pre_ALB_180days |
|
Mean (SD) |
4.00 (0.382) |
Median [Min, Max] |
4.10 [3.10, 4.80] |
pre_PLT_180days |
|
Mean (SD) |
253 (126) |
Median [Min, Max] |
234 [75.0, 917] |
creatinine_median_365 |
|
Mean (SD) |
0.983 (0.289) |
Median [Min, Max] |
0.925 [0.590, 2.02] |
eGFR_cre_baseline |
|
Mean (SD) |
78.8 (19.7) |
Median [Min, Max] |
77.3 [36.9, 112] |
eGFR_cre_median |
|
Mean (SD) |
80.6 (19.1) |
Median [Min, Max] |
83.3 [34.9, 109] |
cre_doubling_7year |
|
0 |
39 (86.7%) |
1 |
6 (13.3%) |