a <- master %>% mutate(time_cate=case_when(time_to_cre<=365 ~ "<1 year",
                                           time_to_cre>365 & time_to_cre<=365*2 ~ "1-2 year",
                                           time_to_cre>365*2 & time_to_cre<=365*3 ~ "2-3 year"))
summary_df <- a %>%
  group_by(time_cate) %>%
  summarise(mean_post_egfr = mean(post_egfr, na.rm = TRUE)) %>%
  arrange(factor(time_cate, levels = c("1 year", "1-2 year", "2-3 year")))

# Step 3: Plot
ggplot(summary_df, aes(x = time_cate, y = mean_post_egfr)) +
  geom_col(fill = "steelblue") +
  labs(
    title = "Mean post_egfr by Time Category",
    x = "Time Category",
    y = "Mean post_egfr"
  ) +
  theme_minimal()

survival_3year cohort Model post_egfr ~ time_to_cre_year : time_to_cre<=365*3

master_3year <- master %>% filter(time_to_cre<=365*3,survival_3year==1) 

model <- lmer(post_egfr ~ time_to_cre_year + (1 | EMPI), data = master_3year)
model %>% tbl_regression( exponentiate = FALSE) %>% add_n()
Characteristic N Beta 95% CI1
time_to_cre_year 21,183 -2.1 -2.3, -1.9
1 CI = Confidence Interval

survival_3year cohort Model post_egfr ~ time_to_cre_year : time_to_cre<=365

master_3year <- master %>% filter(time_to_cre<=365,survival_3year==1)

model <- lmer(post_egfr ~ time_to_cre_year + (1 | EMPI), data = master_3year)
model %>% tbl_regression( exponentiate = FALSE) %>% add_n()
Characteristic N Beta 95% CI1
time_to_cre_year 9,219 -4.9 -5.6, -4.3
1 CI = Confidence Interval

Table 1 survival_3year

Overall
(N=353)
Race
Asian 15 (4.2%)
Black 18 (5.1%)
Other/Unknown 17 (4.8%)
White 303 (85.8%)
Ethnic_Group
Hispanic 1 (0.3%)
Non_hispanic 330 (93.5%)
Other 22 (6.2%)
male
0 155 (43.9%)
1 198 (56.1%)
diu
0 102 (28.9%)
1 251 (71.1%)
ace_arb
0 81 (22.9%)
1 272 (77.1%)
esrd_kt
0 307 (87.0%)
1 46 (13.0%)
dm
1 353 (100%)
htn
0 37 (10.5%)
1 316 (89.5%)
ppi
0 79 (22.4%)
1 274 (77.6%)
steroids
0 49 (13.9%)
1 304 (86.1%)
smoking
0 137 (38.8%)
1 216 (61.2%)
cad
0 210 (59.5%)
1 143 (40.5%)
ICI_Name_clean
Atezolizumab 28 (7.9%)
Avelumab 10 (2.8%)
Cemiplimab 7 (2.0%)
Dostarlimab 0 (0%)
Durvalumab 16 (4.5%)
Ipilimumab 4 (1.1%)
Ipilimumab + Nivolumab 49 (13.9%)
Nivolumab 61 (17.3%)
Nivolumab + Relatlimab 0 (0%)
Pembrolizumab 178 (50.4%)
ckd_stage_baseline
Stage 1 123 (34.8%)
Stage 2 153 (43.3%)
Stage 3a 56 (15.9%)
Stage 3b 18 (5.1%)
Stage 4 3 (0.8%)
ckd_stage_median
Stage 1 130 (36.8%)
Stage 2 150 (42.5%)
Stage 3a 52 (14.7%)
Stage 3b 17 (4.8%)
Stage 4 4 (1.1%)
Stage 5 (Kidney Failure) 0 (0%)
age_baseline
Mean (SD) 67.1 (9.72)
Median [Min, Max] 67.4 [38.0, 91.9]
pre_MALBCRE_365days
Mean (SD) 152 (420)
Median [Min, Max] 27.0 [2.60, 2350]
Missing 312 (88.4%)
pre_CRE_180days
Mean (SD) 0.992 (0.339)
Median [Min, Max] 0.910 [0.450, 2.75]
pre_HGB_180days
Mean (SD) 12.5 (1.79)
Median [Min, Max] 12.5 [7.20, 17.6]
pre_ALB_180days
Mean (SD) 4.04 (0.419)
Median [Min, Max] 4.10 [1.80, 5.00]
pre_PLT_180days
Mean (SD) 247 (94.9)
Median [Min, Max] 234 [73.0, 917]
creatinine_median_365
Mean (SD) 0.987 (0.333)
Median [Min, Max] 0.905 [0.470, 2.83]
eGFR_cre_baseline
Mean (SD) 77.7 (20.7)
Median [Min, Max] 78.8 [23.3, 128]
eGFR_cre_median
Mean (SD) 78.2 (20.3)
Median [Min, Max] 80.0 [22.5, 118]
cre_doubling_3year
0 315 (89.2%)
1 38 (10.8%)

survival_4year cohort Model post_egfr ~ time_to_cre_year : time_to_cre<=365*4

master_4year <- master %>% filter(time_to_cre<=365*4,survival_4year==1)

model <- lmer(post_egfr ~ time_to_cre_year + (1 | EMPI), data = master_4year)
model %>% tbl_regression( exponentiate = FALSE) %>% add_n()
Characteristic N Beta 95% CI1
time_to_cre_year 16,325 -1.4 -1.5, -1.2
1 CI = Confidence Interval

survival_4year cohort Model post_egfr ~ time_to_cre_year : time_to_cre<=365

master_4year <- master %>% filter(time_to_cre<=365,survival_4year==1)

model <- lmer(post_egfr ~ time_to_cre_year + (1 | EMPI), data = master_4year)
model %>% tbl_regression( exponentiate = FALSE) %>% add_n()
Characteristic N Beta 95% CI1
time_to_cre_year 5,902 -5.6 -6.5, -4.8
1 CI = Confidence Interval

Table 1 survival_4year

Overall
(N=227)
Race
Asian 6 (2.6%)
Black 10 (4.4%)
Other/Unknown 11 (4.8%)
White 200 (88.1%)
Ethnic_Group
Hispanic 0 (0%)
Non_hispanic 209 (92.1%)
Other 18 (7.9%)
male
0 97 (42.7%)
1 130 (57.3%)
diu
0 58 (25.6%)
1 169 (74.4%)
ace_arb
0 53 (23.3%)
1 174 (76.7%)
esrd_kt
0 196 (86.3%)
1 31 (13.7%)
dm
1 227 (100%)
htn
0 26 (11.5%)
1 201 (88.5%)
ppi
0 50 (22.0%)
1 177 (78.0%)
steroids
0 30 (13.2%)
1 197 (86.8%)
smoking
0 91 (40.1%)
1 136 (59.9%)
cad
0 138 (60.8%)
1 89 (39.2%)
ICI_Name_clean
Atezolizumab 20 (8.8%)
Avelumab 7 (3.1%)
Cemiplimab 4 (1.8%)
Dostarlimab 0 (0%)
Durvalumab 8 (3.5%)
Ipilimumab 4 (1.8%)
Ipilimumab + Nivolumab 27 (11.9%)
Nivolumab 44 (19.4%)
Nivolumab + Relatlimab 0 (0%)
Pembrolizumab 113 (49.8%)
ckd_stage_baseline
Stage 1 78 (34.4%)
Stage 2 101 (44.5%)
Stage 3a 36 (15.9%)
Stage 3b 10 (4.4%)
Stage 4 2 (0.9%)
ckd_stage_median
Stage 1 78 (34.4%)
Stage 2 102 (44.9%)
Stage 3a 34 (15.0%)
Stage 3b 10 (4.4%)
Stage 4 3 (1.3%)
Stage 5 (Kidney Failure) 0 (0%)
age_baseline
Mean (SD) 66.6 (9.78)
Median [Min, Max] 67.3 [38.0, 91.9]
pre_MALBCRE_365days
Mean (SD) 184 (494)
Median [Min, Max] 22.6 [2.60, 2350]
Missing 198 (87.2%)
pre_CRE_180days
Mean (SD) 1.00 (0.349)
Median [Min, Max] 0.920 [0.480, 2.75]
pre_HGB_180days
Mean (SD) 12.6 (1.79)
Median [Min, Max] 12.6 [7.20, 17.6]
pre_ALB_180days
Mean (SD) 4.05 (0.393)
Median [Min, Max] 4.10 [2.40, 5.00]
pre_PLT_180days
Mean (SD) 242 (96.7)
Median [Min, Max] 229 [73.0, 917]
creatinine_median_365
Mean (SD) 0.996 (0.342)
Median [Min, Max] 0.930 [0.470, 2.83]
eGFR_cre_baseline
Mean (SD) 77.3 (20.6)
Median [Min, Max] 77.0 [23.3, 115]
eGFR_cre_median
Mean (SD) 78.1 (19.9)
Median [Min, Max] 79.2 [22.5, 112]
cre_doubling_4year
0 198 (87.2%)
1 29 (12.8%)

survival_5year cohort Model post_egfr ~ time_to_cre_year : time_to_cre<=365*5

master_5year <- master %>% filter(time_to_cre<=365*5,survival_5year==1)

model <- lmer(post_egfr ~ time_to_cre_year + (1 | EMPI), data = master_5year)
model %>% tbl_regression( exponentiate = FALSE) %>% add_n()
Characteristic N Beta 95% CI1
time_to_cre_year 9,971 -1.2 -1.3, -1.1
1 CI = Confidence Interval

survival_5year cohort Model post_egfr ~ time_to_cre_year : time_to_cre<=365

master_5year <- master %>% filter(time_to_cre<=365,survival_5year==1)

model <- lmer(post_egfr ~ time_to_cre_year + (1 | EMPI), data = master_5year)
model %>% tbl_regression( exponentiate = FALSE) %>% add_n()
Characteristic N Beta 95% CI1
time_to_cre_year 3,396 -7.0 -8.1, -5.9
1 CI = Confidence Interval

Table 1 survival_5year

Overall
(N=129)
Race
Asian 2 (1.6%)
Black 8 (6.2%)
Other/Unknown 8 (6.2%)
White 111 (86.0%)
Ethnic_Group
Hispanic 0 (0%)
Non_hispanic 119 (92.2%)
Other 10 (7.8%)
male
0 57 (44.2%)
1 72 (55.8%)
diu
0 33 (25.6%)
1 96 (74.4%)
ace_arb
0 25 (19.4%)
1 104 (80.6%)
esrd_kt
0 116 (89.9%)
1 13 (10.1%)
dm
1 129 (100%)
htn
0 11 (8.5%)
1 118 (91.5%)
ppi
0 27 (20.9%)
1 102 (79.1%)
steroids
0 19 (14.7%)
1 110 (85.3%)
smoking
0 52 (40.3%)
1 77 (59.7%)
cad
0 82 (63.6%)
1 47 (36.4%)
ICI_Name_clean
Atezolizumab 15 (11.6%)
Avelumab 5 (3.9%)
Cemiplimab 1 (0.8%)
Dostarlimab 0 (0%)
Durvalumab 3 (2.3%)
Ipilimumab 1 (0.8%)
Ipilimumab + Nivolumab 11 (8.5%)
Nivolumab 29 (22.5%)
Nivolumab + Relatlimab 0 (0%)
Pembrolizumab 64 (49.6%)
ckd_stage_baseline
Stage 1 47 (36.4%)
Stage 2 57 (44.2%)
Stage 3a 21 (16.3%)
Stage 3b 3 (2.3%)
Stage 4 1 (0.8%)
ckd_stage_median
Stage 1 47 (36.4%)
Stage 2 60 (46.5%)
Stage 3a 18 (14.0%)
Stage 3b 2 (1.6%)
Stage 4 2 (1.6%)
Stage 5 (Kidney Failure) 0 (0%)
age_baseline
Mean (SD) 66.2 (9.73)
Median [Min, Max] 65.8 [38.0, 87.7]
pre_MALBCRE_365days
Mean (SD) 77.3 (140)
Median [Min, Max] 22.8 [2.60, 528]
Missing 115 (89.1%)
pre_CRE_180days
Mean (SD) 0.986 (0.347)
Median [Min, Max] 0.910 [0.510, 2.75]
pre_HGB_180days
Mean (SD) 12.4 (1.77)
Median [Min, Max] 12.6 [7.20, 16.8]
pre_ALB_180days
Mean (SD) 4.03 (0.384)
Median [Min, Max] 4.00 [2.40, 5.00]
pre_PLT_180days
Mean (SD) 241 (103)
Median [Min, Max] 229 [73.0, 917]
creatinine_median_365
Mean (SD) 0.974 (0.350)
Median [Min, Max] 0.900 [0.470, 2.83]
eGFR_cre_baseline
Mean (SD) 78.6 (20.0)
Median [Min, Max] 78.2 [23.3, 115]
eGFR_cre_median
Mean (SD) 79.9 (19.1)
Median [Min, Max] 79.5 [22.5, 112]
cre_doubling_5year
0 115 (89.1%)
1 14 (10.9%)

survival_6year cohort Model post_egfr ~ time_to_cre_year : time_to_cre<=365*6

master_6year <- master %>% filter(time_to_cre<=365*6,survival_6year==1)

model <- lmer(post_egfr ~ time_to_cre_year + (1 | EMPI), data = master_6year)
model %>% tbl_regression( exponentiate = FALSE) %>% add_n()
Characteristic N Beta 95% CI1
time_to_cre_year 6,899 -0.85 -1.0, -0.71
1 CI = Confidence Interval

survival_6year cohort Model post_egfr ~ time_to_cre_year : time_to_cre<=365

master_6year <- master %>% filter(time_to_cre<=365,survival_6year==1)

model <- lmer(post_egfr ~ time_to_cre_year + (1 | EMPI), data = master_6year)
model %>% tbl_regression( exponentiate = FALSE) %>% add_n()
Characteristic N Beta 95% CI1
time_to_cre_year 2,127 -5.0 -6.2, -3.7
1 CI = Confidence Interval

Table 1 survival_6year

Overall
(N=82)
Race
Asian 2 (2.4%)
Black 8 (9.8%)
Other/Unknown 4 (4.9%)
White 68 (82.9%)
Ethnic_Group
Hispanic 0 (0%)
Non_hispanic 73 (89.0%)
Other 9 (11.0%)
male
0 32 (39.0%)
1 50 (61.0%)
diu
0 24 (29.3%)
1 58 (70.7%)
ace_arb
0 17 (20.7%)
1 65 (79.3%)
esrd_kt
0 75 (91.5%)
1 7 (8.5%)
dm
1 82 (100%)
htn
0 8 (9.8%)
1 74 (90.2%)
ppi
0 18 (22.0%)
1 64 (78.0%)
steroids
0 15 (18.3%)
1 67 (81.7%)
smoking
0 36 (43.9%)
1 46 (56.1%)
cad
0 53 (64.6%)
1 29 (35.4%)
ICI_Name_clean
Atezolizumab 11 (13.4%)
Avelumab 3 (3.7%)
Cemiplimab 0 (0%)
Dostarlimab 0 (0%)
Durvalumab 1 (1.2%)
Ipilimumab 1 (1.2%)
Ipilimumab + Nivolumab 6 (7.3%)
Nivolumab 16 (19.5%)
Nivolumab + Relatlimab 0 (0%)
Pembrolizumab 44 (53.7%)
ckd_stage_baseline
Stage 1 30 (36.6%)
Stage 2 36 (43.9%)
Stage 3a 14 (17.1%)
Stage 3b 1 (1.2%)
Stage 4 1 (1.2%)
ckd_stage_median
Stage 1 31 (37.8%)
Stage 2 39 (47.6%)
Stage 3a 10 (12.2%)
Stage 3b 1 (1.2%)
Stage 4 1 (1.2%)
Stage 5 (Kidney Failure) 0 (0%)
age_baseline
Mean (SD) 66.2 (9.11)
Median [Min, Max] 65.3 [47.4, 87.7]
pre_MALBCRE_365days
Mean (SD) 28.9 (30.0)
Median [Min, Max] 16.7 [2.60, 92.0]
Missing 72 (87.8%)
pre_CRE_180days
Mean (SD) 1.00 (0.340)
Median [Min, Max] 0.945 [0.530, 2.75]
pre_HGB_180days
Mean (SD) 12.4 (1.79)
Median [Min, Max] 12.6 [8.80, 16.8]
pre_ALB_180days
Mean (SD) 4.00 (0.368)
Median [Min, Max] 4.00 [3.10, 4.80]
pre_PLT_180days
Mean (SD) 244 (106)
Median [Min, Max] 228 [75.0, 917]
creatinine_median_365
Mean (SD) 0.981 (0.342)
Median [Min, Max] 0.900 [0.470, 2.83]
eGFR_cre_baseline
Mean (SD) 78.4 (19.5)
Median [Min, Max] 77.1 [23.3, 112]
eGFR_cre_median
Mean (SD) 80.3 (18.5)
Median [Min, Max] 82.0 [22.5, 109]
cre_doubling_6year
0 73 (89.0%)
1 9 (11.0%)

survival_7year cohort Model post_egfr ~ time_to_cre_year : time_to_cre<=365*7

master_7year <- master %>% filter(time_to_cre<=365*7,survival_7year==1)

model <- lmer(post_egfr ~ time_to_cre_year + (1 | EMPI), data = master_7year)
model %>% tbl_regression( exponentiate = FALSE) %>% add_n()
Characteristic N Beta 95% CI1
time_to_cre_year 3,695 -1.8 -2.0, -1.7
1 CI = Confidence Interval

survival_7year cohort Model post_egfr ~ time_to_cre_year : time_to_cre<=365

master_7year <- master %>% filter(time_to_cre<=365,survival_7year==1)

model <- lmer(post_egfr ~ time_to_cre_year + (1 | EMPI), data = master_7year)
model %>% tbl_regression( exponentiate = FALSE) %>% add_n()
Characteristic N Beta 95% CI1
time_to_cre_year 1,175 -3.3 -5.0, -1.5
1 CI = Confidence Interval

Table 1 survival_7year

Overall
(N=45)
Race
Asian 0 (0%)
Black 5 (11.1%)
Other/Unknown 2 (4.4%)
White 38 (84.4%)
Ethnic_Group
Hispanic 0 (0%)
Non_hispanic 39 (86.7%)
Other 6 (13.3%)
male
0 16 (35.6%)
1 29 (64.4%)
diu
0 13 (28.9%)
1 32 (71.1%)
ace_arb
0 8 (17.8%)
1 37 (82.2%)
esrd_kt
0 43 (95.6%)
1 2 (4.4%)
dm
1 45 (100%)
htn
0 2 (4.4%)
1 43 (95.6%)
ppi
0 9 (20.0%)
1 36 (80.0%)
steroids
0 9 (20.0%)
1 36 (80.0%)
smoking
0 18 (40.0%)
1 27 (60.0%)
cad
0 30 (66.7%)
1 15 (33.3%)
ICI_Name_clean
Atezolizumab 6 (13.3%)
Avelumab 3 (6.7%)
Cemiplimab 0 (0%)
Dostarlimab 0 (0%)
Durvalumab 0 (0%)
Ipilimumab 1 (2.2%)
Ipilimumab + Nivolumab 4 (8.9%)
Nivolumab 10 (22.2%)
Nivolumab + Relatlimab 0 (0%)
Pembrolizumab 21 (46.7%)
ckd_stage_baseline
Stage 1 16 (35.6%)
Stage 2 20 (44.4%)
Stage 3a 8 (17.8%)
Stage 3b 1 (2.2%)
Stage 4 0 (0%)
ckd_stage_median
Stage 1 17 (37.8%)
Stage 2 20 (44.4%)
Stage 3a 7 (15.6%)
Stage 3b 1 (2.2%)
Stage 4 0 (0%)
Stage 5 (Kidney Failure) 0 (0%)
age_baseline
Mean (SD) 65.2 (8.76)
Median [Min, Max] 65.2 [47.4, 79.4]
pre_MALBCRE_365days
Mean (SD) 24.6 (28.8)
Median [Min, Max] 13.3 [2.60, 92.0]
Missing 37 (82.2%)
pre_CRE_180days
Mean (SD) 0.998 (0.286)
Median [Min, Max] 0.960 [0.570, 1.93]
pre_HGB_180days
Mean (SD) 12.1 (1.84)
Median [Min, Max] 11.9 [9.20, 16.1]
pre_ALB_180days
Mean (SD) 4.00 (0.382)
Median [Min, Max] 4.10 [3.10, 4.80]
pre_PLT_180days
Mean (SD) 253 (126)
Median [Min, Max] 234 [75.0, 917]
creatinine_median_365
Mean (SD) 0.983 (0.289)
Median [Min, Max] 0.925 [0.590, 2.02]
eGFR_cre_baseline
Mean (SD) 78.8 (19.7)
Median [Min, Max] 77.3 [36.9, 112]
eGFR_cre_median
Mean (SD) 80.6 (19.1)
Median [Min, Max] 83.3 [34.9, 109]
cre_doubling_7year
0 39 (86.7%)
1 6 (13.3%)