##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: hr$left and hr$Work_accident
## X-squared = 357.56, df = 1, p-value < 2.2e-16
#P-value interpretation: The p-value is very small, therefore the probability of these results being random is very small.
#Chi-square test interpretation: There is a dependence between whether an employee had a work accident and whether they left the company.
#Non-technical interpretation: Employees that had work accidents are more likely to stay
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: hr$left and hr$promotion_last_5years
## X-squared = 56.262, df = 1, p-value = 6.344e-14
##
## Pearson's Chi-squared test
##
## data: hr$left and hr$salary
## X-squared = 381.23, df = 2, p-value < 2.2e-16
##
## Pearson's Chi-squared test
##
## data: hr$left and hr$Department
## X-squared = 86.825, df = 9, p-value = 7.042e-15