R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)
##      speed           dist       
##  Min.   : 4.0   Min.   :  2.00  
##  1st Qu.:12.0   1st Qu.: 26.00  
##  Median :15.0   Median : 36.00  
##  Mean   :15.4   Mean   : 42.98  
##  3rd Qu.:19.0   3rd Qu.: 56.00  
##  Max.   :25.0   Max.   :120.00

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

library(dplyr) library(gt) library(tidymodels) library(stringr)

install.packages(“ISLR2”) library(ISLR2)

data(Smarket)

Create training data

train_data <- Smarket %>% filter(Year < 2005)

Fit LDA model

lda_fit <- MASS::lda(Direction ~ Lag1 + Lag2, data = train_data)

Predict on test data

test_data <- Smarket %>% filter(Year == 2005) lda_pred <- predict(lda_fit, test_data)

Confusion matrix

conf_matrix <- table(lda_pred\(class, test_data\)Direction)

Convert to gt table

conf_matrix %>% as.data.frame() %>% rename(Predicted = Var1, Actual = Var2, Count = Freq) %>% tidyr::pivot_wider(names_from = Actual, values_from = Count) %>% gt()

as.data.frame(lda_pred$posterior) %>% slice(1:5) %>% gt()

qda_fit <- MASS::qda(Direction ~ Lag1 + Lag2, data = train_data) qda_pred <- predict(qda_fit, test_data)

table(qda_pred\(class, test_data\)Direction) %>% as.data.frame() %>% rename(Predicted = Var1, Actual = Var2, Count = Freq) %>% tidyr::pivot_wider(names_from = Actual, values_from = Count) %>% gt()