# Load required libraries
library(gapminder)
## Warning: package 'gapminder' was built under R version 4.4.3
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.4.3
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.4.3
library(plotly)
## Warning: package 'plotly' was built under R version 4.4.3
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
library(gganimate)
## Warning: package 'gganimate' was built under R version 4.4.3
library(gifski)
## Warning: package 'gifski' was built under R version 4.4.3
# Preview the dataset
str(gapminder)
## tibble [1,704 × 6] (S3: tbl_df/tbl/data.frame)
## $ country : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ continent: Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ year : int [1:1704] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
## $ lifeExp : num [1:1704] 28.8 30.3 32 34 36.1 ...
## $ pop : int [1:1704] 8425333 9240934 10267083 11537966 13079460 14880372 12881816 13867957 16317921 22227415 ...
## $ gdpPercap: num [1:1704] 779 821 853 836 740 ...
summary(gapminder)
## country continent year lifeExp
## Afghanistan: 12 Africa :624 Min. :1952 Min. :23.60
## Albania : 12 Americas:300 1st Qu.:1966 1st Qu.:48.20
## Algeria : 12 Asia :396 Median :1980 Median :60.71
## Angola : 12 Europe :360 Mean :1980 Mean :59.47
## Argentina : 12 Oceania : 24 3rd Qu.:1993 3rd Qu.:70.85
## Australia : 12 Max. :2007 Max. :82.60
## (Other) :1632
## pop gdpPercap
## Min. :6.001e+04 Min. : 241.2
## 1st Qu.:2.794e+06 1st Qu.: 1202.1
## Median :7.024e+06 Median : 3531.8
## Mean :2.960e+07 Mean : 7215.3
## 3rd Qu.:1.959e+07 3rd Qu.: 9325.5
## Max. :1.319e+09 Max. :113523.1
##
# Define country groups
south_asia <- c("Bangladesh", "India", "Pakistan", "Nepal", "Sri Lanka",
"Bhutan", "Afghanistan", "Maldives", "Myanmar", "Iran")
developed <- c("United States", "Germany", "United Kingdom", "Japan", "France")
underdeveloped <- c("Ethiopia", "Haiti", "Mozambique", "Chad", "Burundi")
selected_countries <- c(south_asia, developed, underdeveloped)
# Filter data
filtered_data <- gapminder %>%
filter(country %in% selected_countries)
# Create static ggplot
p <- ggplot(filtered_data, aes(x = year, y = gdpPercap, color = country)) +
geom_point(alpha = 0.6, size = 2) + # Add points with alpha and size
geom_smooth(method = "lm", se = FALSE) + # Add regression line
labs(title = "GDP per Capita (1952–2007)",
subtitle = "20 Countries (Developing, Developed, Underdeveloped)",
x = "Year", y = "GDP per Capita") +
theme_minimal()
p
## `geom_smooth()` using formula = 'y ~ x'

# Convert static plot to interactive
ggplotly(p)
## `geom_smooth()` using formula = 'y ~ x'
# Create animation
anim <- ggplot(filtered_data, aes(x = year, y = gdpPercap, color = country)) +
geom_point(aes(size = pop), alpha = 0.7) +
scale_size(range = c(2, 10)) +
labs(title = "GDP per Capita Over Time",
subtitle = "Year: {frame_time}",
x = "Year", y = "GDP per Capita") +
transition_time(year) +
ease_aes('linear') +
theme_minimal()
# Render animation
animate(anim, renderer = gifski_renderer())

anim_save("gdp_animation.gif", animation = anim)
knitr::include_graphics("gdp_animation.gif")
