This project explores whether teacher experience is a strong predictor of student success across Texas school districts, using SAT scores as the outcome measure. Additional variables include student demographics, funding per student, and special education populations.

data <- read.csv("district.csv")
read.csv("district.csv") %>% head()
##        DISTNAME DISTRICT     DZCNTYNM REGION DZRATING DZCAMPUS DPETALLC
## 1    CAYUGA ISD     1902 001 ANDERSON      7        A        3      574
## 2   ELKHART ISD     1903 001 ANDERSON      7        A        4     1150
## 3 FRANKSTON ISD     1904 001 ANDERSON      7        A        3      808
## 4    NECHES ISD     1906 001 ANDERSON      7        A        2      342
## 5 PALESTINE ISD     1907 001 ANDERSON      7        B        6     3360
## 6  WESTWOOD ISD     1908 001 ANDERSON      7        B        4     1332
##   DPETBLAP DPETHISP DPETWHIP DPETINDP DPETASIP DPETPCIP DPETTWOP DPETECOP
## 1      4.4     11.5     79.1      0.0      0.5      0.0      4.5     40.8
## 2      4.0     11.8     80.3      0.3      0.2      0.0      3.4     45.4
## 3      8.5     11.3     75.2      0.4      1.0      0.0      3.6     54.2
## 4      8.2     13.5     75.1      0.3      0.3      0.0      2.6     54.1
## 5     25.1     42.9     27.3      0.2      0.7      0.1      3.7     81.6
## 6     19.7     26.2     48.0      0.7      0.5      0.1      4.9     74.0
##   DPETLEPP DPETSPEP DPETBILP DPETVOCP DPETGIFP DA0AT21R DA0912DR21R DAGC4X21R
## 1      1.0     14.6      1.0     30.5      6.1     96.7         0.0     100.0
## 2      2.8     12.1      2.7     31.8      4.6     96.0         0.3     100.0
## 3      4.1     13.1      4.1     43.9      7.3     95.4         0.4      95.2
## 4      2.0     10.5      2.0     29.5      5.6     95.8         0.0      95.8
## 5     17.7     13.5     16.1     30.6      2.3     93.7         0.0      99.0
## 6      7.1     14.5      6.8     38.7      3.2     94.5         0.0      97.8
##   DAGC5X20R DAGC6X19R DA0GR21N DA0GS21N DDA00A001S22R DDA00A001222R
## 1     100.0      96.0       36       34            84            62
## 2      98.9      98.8       91       79            85            59
## 3     100.0      33.3       41       40            83            57
## 4      97.0     100.0       23       17            90            64
## 5      99.6      98.6      201      198            74            46
## 6      97.0      97.4       95       77            69            40
##   DDA00A001322R DDA00AR01S22R DDA00AR01222R DDA00AR01322R DDA00AM01S22R
## 1            33            81            67            39            88
## 2            30            85            64            34            84
## 3            25            84            63            24            85
## 4            27            87            67            30            94
## 5            20            72            48            20            75
## 6            16            70            45            19            66
##   DDA00AM01222R DDA00AM01322R DDA00AC01S22R DDA00AC01222R DDA00AC01322R
## 1            65            34            85            54            22
## 2            49            23            86            63            29
## 3            57            26            81            49            21
## 4            69            27            90            54            23
## 5            44            20            78            48            22
## 6            34            14            73            41            15
##   DDA00AS01S22R DDA00AS01222R DDA00AS01322R DDB00A001S22R DDB00A001222R
## 1            78            47            21            60            17
## 2            90            63            42            46            22
## 3            74            48            26            74            38
## 4            83            51            26            88            48
## 5            72            42            20            64            33
## 6            68            38            15            56            26
##   DDB00A001322R DDH00A001S22R DDH00A001222R DDH00A001322R DDW00A001S22R
## 1             3            74            53            24            87
## 2             8            85            56            25            88
## 3             6            75            46            19            85
## 4            19            91            69            26            89
## 5            11            73            44            19            83
## 6            11            69            36            12            75
##   DDW00A001222R DDW00A001322R DDI00A001S22R DDI00A001222R DDI00A001322R
## 1            66            35            NA            NA            NA
## 2            61            32           100           100           100
## 3            62            28            80            20            20
## 4            66            29            -1            -1            -1
## 5            60            29            75            50            17
## 6            48            21            NA            NA            NA
##   DD300A001S22R DD300A001222R DD300A001322R DD400A001S22R DD400A001222R
## 1            33            33            17            NA            NA
## 2            -1            -1            -1            NA            NA
## 3            84            53            16            NA            NA
## 4            -1            -1            -1            NA            NA
## 5            85            77            44            -1            -1
## 6           100           100            88            -1            -1
##   DD400A001322R DD200A001S22R DD200A001222R DD200A001322R DDE00A001S22R
## 1            NA            83            54            34            76
## 2            NA            77            46            23            77
## 3            NA            75            58            28            77
## 4            NA            -1            -1            -1            86
## 5            -1            74            44            18            70
## 6            -1            62            38            13            65
##   DDE00A001222R DDE00A001322R DA0CT21R DA0CC21R DA0CSA21R DA0CAA21R DPSATOFC
## 1            50            23     58.3     19.0       980        NA     99.9
## 2            42            19     51.6     27.7       979      -1.0    186.6
## 3            49            17     92.7     36.8       980      -1.0    146.7
## 4            53            17     87.0     15.0      1007      18.8     60.1
## 5            40            16     43.3     49.4      1048      21.0    553.4
## 6            34            14     40.0     28.9       990      -1.0    265.1
##   DPSTTOFC DPSCTOFP DPSSTOFP DPSUTOFP DPSTTOFP DPSETOFP DPSXTOFP DPSCTOSA
## 1     46.7      1.5      5.0      5.4     46.8     14.8     26.5    93333
## 2    104.9      1.1      2.1      4.9     56.2     16.2     19.5   100313
## 3     74.5      1.4      3.5      2.0     50.8     15.0     27.4    98293
## 4     30.2      3.1      5.0      1.7     50.3     13.7     26.2    85537
## 5    260.3      2.1      3.4      8.3     47.0     19.7     19.5    99324
## 6    120.6      1.1      4.6      4.4     45.5     19.2     25.2   121228
##   DPSSTOSA DPSUTOSA DPSTTOSA DPSAMIFP DPSAKIDR DPSTKIDR DPST05FP DPSTEXPA
## 1    73300    59550    55570     15.6      5.7     12.3     10.4     16.7
## 2    79305    60616    47916     13.4      6.2     11.0     23.8     13.5
## 3    71215    58022    50382     10.9      5.5     10.8     32.7     12.8
## 4    81593    77642    55346     16.3      5.7     11.3      9.7     14.8
## 5    80415    63829    48825     32.1      6.1     12.9     33.8     12.7
## 6    69527    63612    44741     29.9      5.0     11.0     44.8     10.3
##   DPSTADFP DPSTURNR DPSTBLFP DPSTHIFP DPSTWHFP DPSTINFP DPSTASFP DPSTPIFP
## 1     14.8     19.1      8.3      0.0     91.7      0.0        0        0
## 2     19.0     13.9      2.9      6.7     90.5      0.0        0        0
## 3     30.7     21.6      4.0      1.3     93.3      0.0        0        0
## 4      9.6     18.3      6.5      0.0     93.5      0.0        0        0
## 5     15.4     17.9      9.6     13.8     74.6      0.0        0        0
## 6     17.4     30.6     11.6      6.6     80.9      0.8        0        0
##   DPSTTWFP DPSTREFP DPSTSPFP DPSTCOFP DPSTBIFP DPSTVOFP DPSTGOFP DPFVTOTK
## 1      0.0     81.6      9.9      0.0      0.0      8.5      0.0   551481
## 2      0.0     71.5      8.4      4.9      0.7     13.0      1.5   250124
## 3      1.3     87.6      7.5      2.7      0.0      2.2      0.0   373882
## 4      0.0     70.0      5.5     12.0      0.0     10.8      1.7   339519
## 5      1.9     71.4     10.2      5.0      2.6      9.0      1.8   337763
## 6      0.0     71.4      6.4      6.1      0.0     10.8      5.3   381133
##   DPFTADPR DPFRAALLT DPFRAALLK DPFRAOPRT DPFRASTAP DZRVLOCP DPFRAFEDP DPFRAORVT
## 1    1.055  10600571     19814  10525571      47.2     34.4      18.4     75000
## 2    1.244  16544197     13787  15623002      61.8     25.7      12.5    921195
## 3    1.341  10632871     13845   9815575      58.2     30.5      11.3    817296
## 4    1.370   5044735     14925   4573108      64.2     27.7       8.1    471627
## 5    1.405  59631485     17549  45806947      48.3     30.6      21.1  13824538
## 6    1.053  18304035     13538  18204035      51.5     32.5      15.9    100000
##   DPFUNAB1T DPFUNA4T DPFEAALLT DPFEAOPFT DPFEAOPFK DPFEAINSP DZEXADMP DZEXADSP
## 1   3306025        0   9222524   8878441     16595      49.6      9.1      3.7
## 2   6071780        0  15181525  13694502     11412      60.3      6.9      4.8
## 3   3880100        0  10569512   9568092     12458      54.2      8.3      6.1
## 4    930315        0   5061803   4709122     13932      53.7     10.7      8.7
## 5  10006405        0  52684829  43017866     12660      54.6      8.3      6.2
## 6   8510495        0  17702691  17289992     12788      50.6      8.5      7.0
##   DZEXPLAP DZEXOTHP DPFEAINST DPFEAINSK DPFPAREGP DPFPASPEP DPFPACOMP DPFPABILP
## 1     10.2     27.4   4405076      8234      32.9      28.9       5.9       0.1
## 2     10.5     17.4   8261144      6884      44.0       8.8       7.6       0.0
## 3     13.6     17.8   5184733      6751      42.5       8.4       6.1       0.0
## 4     10.3     16.6   2529704      7484      40.3      10.1       8.6       0.1
## 5     10.8     20.1  23492731      6914      43.2       6.1       7.1       1.0
## 6     10.5     23.3   8750034      6472      36.8       9.4       8.9       0.2
##   DPFPAVOCP DPFPAGIFP DPFPAATHP DPFPAHSAP DPFPREKP DPFPAOTHP       DISTSIZE
## 1       3.3       0.0       3.7       0.0      0.0      24.1     500 to 999
## 2       6.9       0.0       3.8       0.0      0.0      26.8 1,000 to 1,599
## 3       5.3       0.1       6.7       0.0      0.2      28.6     500 to 999
## 4       4.5       0.0       0.0       0.0      0.7      34.1      Under 500
## 5       4.2       0.1       3.5       0.7      0.9      30.7 3,000 to 4,999
## 6       4.1       0.1       4.7       0.0      0.8      32.4 1,000 to 1,599
##                  COMMTYPE               PROPWLTH                  TAXRATE
## 1                   Rural $539,089 to < $573,876            Under $1.0809
## 2 Non-metropolitan Stable $234,712 to < $298,152 $1.2148 to under $1.3239
## 3                   Rural $359,962 to < $411,857         $1.3239 and over
## 4                   Rural $298,152 to < $340,843         $1.3239 and over
## 5        Independent Town $298,152 to < $340,843         $1.3239 and over
## 6 Non-metropolitan Stable $359,962 to < $411,857            Under $1.0809
data_clean <- data %>%
  filter(!is.na(DPSATOFC), !is.na(DPFUNAB1T), DPFUNAB1T >= 0) %>%
  mutate(log_FUNAB1T = log(DPFUNAB1T + 1))
# Model 1: Basic model
model1 <- lm(DPSATOFC ~ DPSTEXPA + DPSTBLFP + DPSTHIFP + DPSTWHFP + DPSTSPFP + DPFUNAB1T, data = data_clean)
summary(model1)
## 
## Call:
## lm(formula = DPSATOFC ~ DPSTEXPA + DPSTBLFP + DPSTHIFP + DPSTWHFP + 
##     DPSTSPFP + DPFUNAB1T, data = data_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5932.6  -162.3   -41.6    59.1  7923.9 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.584e+02  3.180e+02   1.756   0.0794 .  
## DPSTEXPA    -1.193e+01  6.227e+00  -1.916   0.0556 .  
## DPSTBLFP    -2.940e+00  3.642e+00  -0.807   0.4196    
## DPSTHIFP    -2.325e+00  3.376e+00  -0.689   0.4912    
## DPSTWHFP    -5.708e+00  3.360e+00  -1.699   0.0896 .  
## DPSTSPFP     2.048e+01  4.706e+00   4.352 1.47e-05 ***
## DPFUNAB1T    3.940e-05  4.845e-07  81.333  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 619.3 on 1190 degrees of freedom
## Multiple R-squared:  0.8641, Adjusted R-squared:  0.8634 
## F-statistic:  1261 on 6 and 1190 DF,  p-value: < 2.2e-16
# Model 2: Log-transformed funding
model2 <- lm(DPSATOFC ~ DPSTEXPA + DPSTBLFP + DPSTHIFP + DPSTWHFP + DPSTSPFP + log_FUNAB1T, data = data_clean)
summary(model2)
## 
## Call:
## lm(formula = DPSATOFC ~ DPSTEXPA + DPSTBLFP + DPSTHIFP + DPSTWHFP + 
##     DPSTSPFP + log_FUNAB1T, data = data_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2795.4  -530.3  -220.7   103.5 21240.9 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 2796.396    773.961   3.613 0.000315 ***
## DPSTEXPA     -45.009     16.048  -2.805 0.005119 ** 
## DPSTBLFP     -13.013      8.828  -1.474 0.140763    
## DPSTHIFP     -26.846      8.262  -3.249 0.001190 ** 
## DPSTWHFP     -41.468      8.219  -5.046 5.23e-07 ***
## DPSTSPFP      58.470     11.775   4.966 7.85e-07 ***
## log_FUNAB1T  114.732      9.738  11.782  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1501 on 1190 degrees of freedom
## Multiple R-squared:  0.2019, Adjusted R-squared:  0.1979 
## F-statistic: 50.17 on 6 and 1190 DF,  p-value: < 2.2e-16

The dataset includes over 1,200 Texas school districts. We cleaned the data to remove missing values and created a log-transformed version of the funding variable to improve statistical assumptions for regression.

data_clean <- data_clean %>%
  mutate(predicted_SAT = predict(model1))

ggplot(data_clean, aes(x = predicted_SAT, y = DPSATOFC)) +
  geom_point(alpha = 0.5) +
  geom_abline(intercept = 0, slope = 1, linetype = "dashed", color = "blue") +
  labs(
    title = "Predicted vs. Actual SAT Scores",
    x = "Predicted SAT",
    y = "Actual SAT"
  ) +
  theme_minimal()

ggplot(data_clean, aes(x = DPSTEXPA, y = DPSATOFC)) +
  geom_point(alpha = 0.5) +
  geom_smooth(method = "lm", color = "orange") +
  labs(
    title = "Teacher Experience vs. SAT Scores",
    x = "Average Years of Teacher Experience",
    y = "SAT Score"
  ) +
  theme_minimal()
## `geom_smooth()` using formula = 'y ~ x'

ggplot(data_clean, aes(x = DPSTSPFP, y = DPSATOFC)) +
  geom_point(alpha = 0.5) +
  geom_smooth(method = "lm", color = "purple") +
  labs(
    title = "Special Education % vs. SAT Scores",
    x = "Special Education %", y = "SAT Score"
  ) +
  theme_minimal()
## `geom_smooth()` using formula = 'y ~ x'

ggplot(data_clean, aes(x = log_FUNAB1T, y = DPSATOFC)) +
  geom_point(alpha = 0.5) +
  geom_smooth(method = "lm", color = "darkgreen") +
  labs(
    title = "Log of Per-Student Funding vs. SAT Scores",
    x = "Log(Funding per Student)", y = "SAT Score"
  ) +
  theme_minimal()
## `geom_smooth()` using formula = 'y ~ x'

### Conclusion

This analysis suggests that teacher experience, while important, is not the strongest predictor of SAT scores in Texas school districts. Instead, funding levels and special education support are more strongly associated with academic success. These findings align with recent literature questioning whether experience alone guarantees better outcomes in test-focused environments.

R Markdown