# Load ggplot2 package for visualization
library(ggplot2)program 5
Step 1: Load Required Library
Step 2: Explore the Inbuilt Dataset
# Use the built-in 'iris' dataset
# 'Petal.Length' is a continuous variable
# 'Species' is a categorical grouping variable
str(iris) # Shows the structure of the dataset'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
Step 3: Create Histogram with Group-wise Density Curves
Step 3.1: Initialize the ggplot with aesthetic mappings
# Start ggplot with iris dataset
# Map Petal.Length to x-axis and fill by Species (grouping variable)
p <- ggplot(data = iris, aes(x = Petal.Length, fill = Species))
pStep 3.2: Add Histogram Layer
# Add histogram with density scaling
p <- p + geom_histogram(aes(y = ..density..),
alpha = 0.4, # Set transparency
position = "identity",# Overlap histograms
bins = 30) # Number of bins
pWarning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
ℹ Please use `after_stat(density)` instead.
Step 3.3: Add Density Curve Layer
# Overlay density curves for each group
p <- p +
geom_density(aes(color = Species), # Line color by group
size = 1.2)# Line thicknessWarning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.
pStep 3.4: Add Labels and Theme
# Add title and axis labels, and apply clean theme
p <- p + labs(
title = "Distribution of Petal Length with Group-wise Density Curves",
x = "Petal Length",
y = "Density")+
theme_minimal()
pStep 3.5: Display the Plot
# Finally, render the plot
p