Data

# growth ~ tannin
reg <- read.table("clipboard", header=TRUE)
names(reg)
summary(reg)
[1] "growth" "tannin"
growth tannin
Min. : 2.000 Min. :0
1st Qu.: 3.000 1st Qu.:2
Median : 7.000 Median :4
Mean : 6.889 Mean :4
3rd Qu.:10.000 3rd Qu.:6
Max. :12.000 Max. :8
Plots
p <- ggplot(aes(x=tannin, y=growth), data= reg)
p + geom_point() +
geom_vline(xintercept = mean(reg$tannin), col=2, linetype= "dashed") +
geom_hline(yintercept = mean(reg$growth), col=2, linetype= "dashed") +
geom_segment(aes(x=tannin, y= mean(growth), xend= tannin, yend=growth))

En la figura arriba vemos las diferencias ỹ - y
que
elevadas al cuadrado y sumadas hacen sumatoria de cuadrados
total - SST
El modelo lineal
Comando lm()
rl <- lm(growth ~ tannin , data=reg)
coef(rl)
(Intercept) tannin
11.755556 -1.216667
summary(rl)$r.squared
[1] 0.8156633
p + geom_point() +
geom_vline(xintercept = mean(reg$tannin), col=2, linetype= "dashed") +
geom_hline(yintercept = mean(reg$growth), col=2, linetype= "dashed") +
geom_segment(aes(x=tannin, y= mean(growth), xend= tannin, yend=growth)) +
geom_smooth(method= "lm", se=FALSE)

SSE (Sumatoria de cuadrados del error [residual] )
En la figura de abajo vemos en color verde las diferencias tnre los
valores observados y los valores ajustados
ŷ - y
(no me refiero a
ỹ
, ver arriba).
La sumatoria de esas diferencias hacen la SSE
p + geom_point() +
geom_vline(xintercept = mean(reg$tannin), col=2, linetype= "dashed") +
geom_hline(yintercept = mean(reg$growth), col=2, linetype= "dashed") +
geom_segment(aes(x=tannin, y= mean(growth), xend= tannin, yend=growth)) +
geom_segment(aes(x=tannin, y= rl$fitted.values, xend= tannin, yend=growth), col= "green") +
geom_smooth(method= "lm", se=FALSE)

SSR = SST - SSE, (SSE en verde, SSR en negro). SSR representa la
variación en Y
que se debe a la varianza de
X
p + geom_point() +
geom_smooth(method= "lm", se=FALSE) +
geom_segment(aes(x=tannin, y= rl$fitted.values, xend= tannin, yend=growth))

Aproximado como un “Analysis of variance” - aov()
La sumatoria de cuadrados que se debe a la variable predictora es:
SSR = SST - SSE
La sumatoria de cuadrados total (SST) es:
SST <- var(reg$growth) * 8; SST # SST
[1] 108.8889
La sumatoria de cuadrados residual (del “Error”):
[1] 20.07222
Entonces, la sumatoria de cuadrados que se debe a la predictora (que
en la regresión es la SSR), es:
SSR <- SST - SSE ; SSR # SSR
[1] 88.81667
aov <- aov(growth ~ tannin , data=reg)
summary(aov)
Df Sum Sq Mean Sq F value Pr(>F)
tannin 1 88.82 88.82 30.97 0.000846 ***
Residuals 7 20.07 2.87
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
El coeficiente de determinación ( R2) aproximado desde el
aov()
SSR/SST # R-squared
[1] 0.8156633
Compararlo arriba con la regresión.
LS0tDQp0aXRsZTogIkxfUmVncmVzc2lvbiINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCmBgYHtyIGVjaG89RkFMU0UsIGV2YWw9RkFMU0UsIG1lc3NhZ2U9RkFMU0V9DQpsaWJyYXJ5KGdvb2dsZXNoZWV0czQpOyBnczRfZGVhdXRoKCkNCmxpYnJhcnkodGlkeXZlcnNlKQ0KbGlicmFyeShnZ3B1YnIpDQpgYGAgIA0KDQojIyMjIERhdGEgIA0KDQohWyBdKEM6L1VzZXJzL2Z2aWxsL015IERyaXZlL0VzdF9CYXNfQXBsaWNhZGFfMjAyNS9maWd1cmVzL3Rhbm5pbi5qcGcpICANCg0KYGBge3IgZWNobz1UUlVFLCBldmFsPUZBTFNFLCBtZXNzYWdlPUZBTFNFLCBpbmNsdWRlPSBUUlVFfQ0KIyBncm93dGggfiB0YW5uaW4gIA0KcmVnIDwtIHJlYWQudGFibGUoImNsaXBib2FyZCIsIGhlYWRlcj1UUlVFKQ0KbmFtZXMocmVnKQ0Kc3VtbWFyeShyZWcpDQoNCmBgYA0KDQpgYGB7ciBlY2hvPUZBTFNFLCBtZXNzYWdlPUZBTFNFLCBpbmNsdWRlPVRSVUV9DQojIGdyb3d0aCB+IHRhbm5pbiAgDQpyZWcgPC0gcmVhZC50YWJsZSgiQ3Jhd2xleS90YW5uaW4udHh0IiwgaGVhZGVyPVRSVUUpDQpuYW1lcyhyZWcpDQpzdW1tYXJ5KHJlZykNCg0KYGBgICAgDQoNCiMjIyMgUGxvdHMNCg0KYGBge3IgZWNobz1UUlVFfQ0KcCA8LSBnZ3Bsb3QoYWVzKHg9dGFubmluLCB5PWdyb3d0aCksIGRhdGE9IHJlZykNCnAgKyBnZW9tX3BvaW50KCkgKw0KICBnZW9tX3ZsaW5lKHhpbnRlcmNlcHQgPSBtZWFuKHJlZyR0YW5uaW4pLCBjb2w9MiwgbGluZXR5cGU9ICJkYXNoZWQiKSArDQogIGdlb21faGxpbmUoeWludGVyY2VwdCA9IG1lYW4ocmVnJGdyb3d0aCksIGNvbD0yLCBsaW5ldHlwZT0gImRhc2hlZCIpICsNCiAgZ2VvbV9zZWdtZW50KGFlcyh4PXRhbm5pbiwgeT0gbWVhbihncm93dGgpLCB4ZW5kPSB0YW5uaW4sIHllbmQ9Z3Jvd3RoKSkNCmBgYCAgDQoNCkVuIGxhIGZpZ3VyYSBhcnJpYmEgdmVtb3MgbGFzIGRpZmVyZW5jaWFzIGDhu7kgLSB5YCBxdWUgZWxldmFkYXMgYWwgY3VhZHJhZG8geSBzdW1hZGFzIGhhY2VuICoqKnN1bWF0b3JpYSBkZSBjdWFkcmFkb3MgdG90YWwqKiogLSAqKipTU1QqKioNCg0KIyMjIEVsIG1vZGVsbyBsaW5lYWwNCiMjIyMgQ29tYW5kbyBgbG0oKWANCmBgYHtyfQ0KcmwgPC0gbG0oZ3Jvd3RoIH4gdGFubmluICwgZGF0YT1yZWcpDQpjb2VmKHJsKQ0Kc3VtbWFyeShybCkkci5zcXVhcmVkDQpgYGAgIA0KDQoNCmBgYHtyIGVjaG89VFJVRSwgbWVzc2FnZT1GQUxTRSwgcmVzdWx0cz1GQUxTRX0NCnAgKyBnZW9tX3BvaW50KCkgKw0KICBnZW9tX3ZsaW5lKHhpbnRlcmNlcHQgPSBtZWFuKHJlZyR0YW5uaW4pLCBjb2w9MiwgbGluZXR5cGU9ICJkYXNoZWQiKSArDQogIGdlb21faGxpbmUoeWludGVyY2VwdCA9IG1lYW4ocmVnJGdyb3d0aCksIGNvbD0yLCBsaW5ldHlwZT0gImRhc2hlZCIpICsNCiAgZ2VvbV9zZWdtZW50KGFlcyh4PXRhbm5pbiwgeT0gbWVhbihncm93dGgpLCB4ZW5kPSB0YW5uaW4sIHllbmQ9Z3Jvd3RoKSkgKw0KICBnZW9tX3Ntb290aChtZXRob2Q9ICJsbSIsIHNlPUZBTFNFKQ0KYGBgICANCg0KDQojIyMjIFNTRSAoU3VtYXRvcmlhIGRlIGN1YWRyYWRvcyBkZWwgZXJyb3IgW3Jlc2lkdWFsXSApICANCiMjIyMjIEVuIGxhIGZpZ3VyYSBkZSBhYmFqbyB2ZW1vcyBlbiBjb2xvciB2ZXJkZSBsYXMgZGlmZXJlbmNpYXMgdG5yZSBsb3MgdmFsb3JlcyBvYnNlcnZhZG9zIHkgbG9zIHZhbG9yZXMgYWp1c3RhZG9zICoqYMW3IC0geWAqKiAobm8gbWUgcmVmaWVybyBhICoqYOG7uWAqKiwgdmVyIGFycmliYSkuDQojIyMjIyBMYSBzdW1hdG9yaWEgZGUgZXNhcyBkaWZlcmVuY2lhcyBoYWNlbiBsYSBTU0UNCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIGVjaG89VFJVRX0NCnAgKyBnZW9tX3BvaW50KCkgKw0KICBnZW9tX3ZsaW5lKHhpbnRlcmNlcHQgPSBtZWFuKHJlZyR0YW5uaW4pLCBjb2w9MiwgbGluZXR5cGU9ICJkYXNoZWQiKSArDQogIGdlb21faGxpbmUoeWludGVyY2VwdCA9IG1lYW4ocmVnJGdyb3d0aCksIGNvbD0yLCBsaW5ldHlwZT0gImRhc2hlZCIpICsNCiAgZ2VvbV9zZWdtZW50KGFlcyh4PXRhbm5pbiwgeT0gbWVhbihncm93dGgpLCB4ZW5kPSB0YW5uaW4sIHllbmQ9Z3Jvd3RoKSkgKw0KICBnZW9tX3NlZ21lbnQoYWVzKHg9dGFubmluLCB5PSBybCRmaXR0ZWQudmFsdWVzLCB4ZW5kPSB0YW5uaW4sIHllbmQ9Z3Jvd3RoKSwgY29sPSAiZ3JlZW4iKSArDQogIGdlb21fc21vb3RoKG1ldGhvZD0gImxtIiwgc2U9RkFMU0UpDQpgYGAgIA0KDQpTU1IgPSBTU1QgLSBTU0UsICAoU1NFIGVuIHZlcmRlLCBTU1IgZW4gbmVncm8pLiBTU1IgcmVwcmVzZW50YSBsYSB2YXJpYWNpw7NuIGVuIGBZYCBxdWUgc2UgZGViZSBhIGxhIHZhcmlhbnphIGRlIGBYYCAgDQoNCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHJlc3VsdHM9RkFMU0UsIGVjaG89VFJVRSwgZXZhbD0gVFJVRX0NCnAgKyBnZW9tX3BvaW50KCkgKw0KICBnZW9tX3Ntb290aChtZXRob2Q9ICJsbSIsIHNlPUZBTFNFKSArIA0KICBnZW9tX3NlZ21lbnQoYWVzKHg9dGFubmluLCB5PSBybCRmaXR0ZWQudmFsdWVzLCB4ZW5kPSB0YW5uaW4sIHllbmQ9Z3Jvd3RoKSkNCmBgYCAgDQoNCg0KDQojIyMgQXByb3hpbWFkbyBjb21vIHVuICJBbmFseXNpcyBvZiB2YXJpYW5jZSIgLSBgYW92KClgDQojIyMjIyBMYSBzdW1hdG9yaWEgZGUgY3VhZHJhZG9zIHF1ZSBzZSBkZWJlIGEgbGEgdmFyaWFibGUgcHJlZGljdG9yYSBlczogU1NSID0gU1NUIC0gU1NFDQoNCiMjIyMjIExhIHN1bWF0b3JpYSBkZSBjdWFkcmFkb3MgdG90YWwgKFNTVCkgZXM6DQpgYGB7ciBtZXNzYWdlPUZBTFNFfQ0KU1NUIDwtIHZhcihyZWckZ3Jvd3RoKSAqIDg7IFNTVCAgICAgICAgICAgICAgICAgIyBTU1QgDQpgYGAgIA0KTGEgc3VtYXRvcmlhIGRlIGN1YWRyYWRvcyByZXNpZHVhbCAoZGVsICJFcnJvciIpOg0KYGBge3IgbWVzc2FnZT1GQUxTRSwgZWNobz1GQUxTRX0NClNTRSA8LSBzdW0oIChyZWckZ3Jvd3RoIC0gDQogICAgICAgICAgICAgICBybCRmaXR0ZWQudmFsdWVzKV4yICkgOyBTU0UgICAgICAjIFNTRQ0KYGBgICANCg0KRW50b25jZXMsIGxhIHN1bWF0b3JpYSBkZSBjdWFkcmFkb3MgcXVlIHNlIGRlYmUgYSBsYSBwcmVkaWN0b3JhICAocXVlIGVuIGxhIHJlZ3Jlc2nDs24gZXMgbGEgU1NSKSwgZXM6IA0KYGBge3IgbWVzc2FnZT1GQUxTRX0NClNTUiA8LSBTU1QgLSBTU0UgOyBTU1IgICAgICAgICAgICAgICAgICAgICAgICAgICMgU1NSDQoNCmBgYCAgDQoNCmBgYHtyfQ0KYW92IDwtIGFvdihncm93dGggfiB0YW5uaW4gLCBkYXRhPXJlZykNCnN1bW1hcnkoYW92KQ0KYGBgICANCg0KIyMjIyBFbCBjb2VmaWNpZW50ZSBkZSBkZXRlcm1pbmFjacOzbiAoIFJeMl4pIGFwcm94aW1hZG8gZGVzZGUgZWwgYGFvdigpYA0KYGBge3J9DQpTU1IvU1NUICAgICAgICMgUi1zcXVhcmVkDQpgYGAgIA0KQ29tcGFyYXJsbyBhcnJpYmEgY29uIGxhIHJlZ3Jlc2nDs24uDQo=