Week 4 Assignment

load("C:\\Users\\user\\Documents\\U of Waterloo\\Courses\\2014a_PSYCH670_Data Visualization\\R files\\sampDat.dat")
summary(subS)
##     pos            orient          judgori           rt       
##  left :14662   Min.   :  0.01   Min.   :-110   Min.   :0.102  
##  right:14714   1st Qu.: 45.11   1st Qu.:  47   1st Qu.:0.929  
##                Median : 90.38   Median :  90   Median :1.215  
##                Mean   : 90.21   Mean   :  89   Mean   :1.343  
##                3rd Qu.:135.45   3rd Qu.: 132   3rd Qu.:1.615  
##                Max.   :180.00   Max.   : 315   Max.   :4.942  
##                                                               
##     angdiff          validcue        blocknum       trialnum    
##  Min.   :-89.89   FALSE  :    0   Min.   :1.00   Min.   :  1.0  
##  1st Qu.: -8.69   TRUE   :    0   1st Qu.:1.00   1st Qu.: 38.0  
##  Median : -0.06   invalid: 5908   Median :2.00   Median : 76.0  
##  Mean   :  0.16   valid  :23468   Mean   :2.42   Mean   : 75.6  
##  3rd Qu.:  8.89                   3rd Qu.:3.00   3rd Qu.:113.0  
##  Max.   : 89.89                   Max.   :5.00   Max.   :150.0  
##                                                                 
##      userid      tilt       orientToVert    angdiff_TV    
##  701    :  750   l:14735   Min.   : 0.0   Min.   :-89.89  
##  704    :  750   r:14641   1st Qu.:22.7   1st Qu.:-11.68  
##  705    :  750             Median :45.2   Median : -2.50  
##  715L   :  750             Mean   :45.0   Mean   : -3.62  
##  717L   :  750             3rd Qu.:67.5   3rd Qu.:  5.96  
##  718L   :  750             Max.   :90.0   Max.   : 89.89  
##  (Other):24876                                            
##  angdiff_TV_MC    
##  Min.   :-104.65  
##  1st Qu.:  -8.16  
##  Median :   0.00  
##  Mean   :  -0.44  
##  3rd Qu.:   8.03  
##  Max.   : 130.31  
## 

Subselect the participants who were in experiment 1

attach(subS)
sss <- subset(subS, grepl("exp", userid))

Average their performance by trial

attach(sss)
## The following objects are masked from subS:
## 
##     angdiff, angdiff_TV, angdiff_TV_MC, blocknum, judgori, orient,
##     orientToVert, pos, rt, tilt, trialnum, userid, validcue
aggregate(sss$angdiff, list(sss$trialnum), mean)
##     Group.1         x
## 1         1 -2.670398
## 2         2 -5.124995
## 3         3  2.647381
## 4         4  0.832403
## 5         5 -3.441631
## 6         6  5.461729
## 7         7 -4.156179
## 8         8 -0.643324
## 9         9 -3.210095
## 10       10 -8.192300
## 11       11 -3.222406
## 12       12 -3.866651
## 13       13  6.166466
## 14       14 -1.505699
## 15       15  2.407629
## 16       16 -6.481469
## 17       17  0.388247
## 18       18 -1.223829
## 19       19 -5.772757
## 20       20 -6.933442
## 21       21 -1.157801
## 22       22 -3.086077
## 23       23 -2.743384
## 24       24 -0.650478
## 25       25 -2.100910
## 26       26 -0.448781
## 27       27  2.569314
## 28       28 -3.574442
## 29       29 -4.434958
## 30       30  5.066296
## 31       31 -1.075828
## 32       32  4.881443
## 33       33  2.039234
## 34       34 -0.554684
## 35       35 -6.696518
## 36       36 -5.359474
## 37       37 -1.124459
## 38       38 -1.490703
## 39       39 -1.352312
## 40       40 -3.672581
## 41       41  1.578817
## 42       42 -0.002027
## 43       43  4.209206
## 44       44  2.906927
## 45       45  1.686794
## 46       46 -1.633090
## 47       47 -1.806894
## 48       48 -1.808613
## 49       49  0.426521
## 50       50  1.779458
## 51       51 -2.781542
## 52       52  6.097033
## 53       53  0.866697
## 54       54  1.987467
## 55       55 -0.237049
## 56       56 -0.915178
## 57       57  5.306105
## 58       58 -0.631636
## 59       59 -0.858855
## 60       60 -1.486899
## 61       61  7.175333
## 62       62  2.748632
## 63       63  0.787155
## 64       64  0.014780
## 65       65 -3.828708
## 66       66  3.333454
## 67       67  2.129087
## 68       68  7.539733
## 69       69  1.913520
## 70       70 -2.296308
## 71       71 -0.757699
## 72       72  2.866162
## 73       73  1.054805
## 74       74 -3.589325
## 75       75  0.299681
## 76       76  3.008128
## 77       77  4.315755
## 78       78 -3.582272
## 79       79 -1.132524
## 80       80  1.140614
## 81       81  0.163047
## 82       82  1.048168
## 83       83 -3.797248
## 84       84  3.121168
## 85       85  2.062459
## 86       86  1.109950
## 87       87 -1.284351
## 88       88  1.316607
## 89       89 -1.380916
## 90       90 -0.777615
## 91       91 -4.882464
## 92       92 -6.715901
## 93       93  1.906358
## 94       94 -1.806107
## 95       95  5.267178
## 96       96 -3.817129
## 97       97  1.564589
## 98       98 -7.348951
## 99       99  1.721656
## 100     100 -6.648906
## 101     101 -0.136319
## 102     102  0.380423
## 103     103  0.831317
## 104     104  7.885080
## 105     105 -0.698950
## 106     106  0.922815
## 107     107  3.902420
## 108     108 -9.749621
## 109     109 -6.350129
## 110     110  0.021219
## 111     111 -2.776406
## 112     112  1.818551
## 113     113  0.092698
## 114     114 -1.680790
## 115     115 -1.561477
## 116     116 -2.658477
## 117     117 -2.039022
## 118     118  3.467404
## 119     119  7.397940
## 120     120 -0.260429
## 121     121  5.527710
## 122     122  1.652656
## 123     123  3.983540
## 124     124 -0.236345
## 125     125 -1.229429
## 126     126 -0.858935
## 127     127  8.172214
## 128     128 -3.405212
## 129     129  2.426962
## 130     130 -0.989612
## 131     131 -0.015726
## 132     132  0.607751
## 133     133 -6.660906
## 134     134 -4.883076
## 135     135 -0.952799
## 136     136 -1.683391
## 137     137  2.455502
## 138     138  2.522643
## 139     139  2.466422
## 140     140  8.883960
## 141     141  0.615883
## 142     142  2.329115
## 143     143 -2.477037
## 144     144  0.794649
## 145     145 -0.043735
## 146     146 -1.094312
## 147     147  0.093204
## 148     148 -0.165426
## 149     149 -5.050404
## 150     150 -1.192389

Plot the average performance (y) versus trialnum (x)

library(ggplot2)
attach(sss)
## The following objects are masked from sss (position 4):
## 
##     angdiff, angdiff_TV, angdiff_TV_MC, blocknum, judgori, orient,
##     orientToVert, pos, rt, tilt, trialnum, userid, validcue
## The following objects are masked from subS:
## 
##     angdiff, angdiff_TV, angdiff_TV_MC, blocknum, judgori, orient,
##     orientToVert, pos, rt, tilt, trialnum, userid, validcue
z <- aggregate(sss$angdiff, list(sss$trialnum), mean)
attach(z)
ggplot(data = z, aes(x = Group.1, y = x)) + geom_smooth() + labs(x = "Trials", 
    y = "Average AngDiff")
## geom_smooth: method="auto" and size of largest group is <1000, so using loess. Use 'method = x' to change the smoothing method.

plot of chunk unnamed-chunk-4