tidyverse初认识

1 第一题 编写代码

利用nycflights13包的flights数据集是2013年从纽约三大机场(JFK、LGA、EWR)起飞的所有航班的准点数据,共336776条记录。

  • 计算纽约三大机场2013起飞航班数和平均延误时间(可使用group_by, summarise函数)

    library(nycflights13)
    library(dplyr)
    # 按机场分组统计
    result <- flights %>%
        group_by(origin) %>%                    # 按机场分组(origin 列)
        summarise(
            total_flights = n(),                   # 计算总航班数
            avg_dep_delay = mean(dep_delay, na.rm = TRUE)  # 平均起飞延误(忽略 NA)
        ) %>%
        mutate(avg_dep_delay = round(avg_dep_delay, 2))  # 四舍五入保留两位小数
    
    # 查看结果
    print(result)
    # A tibble: 3 × 3
      origin total_flights avg_dep_delay
      <chr>          <int>         <dbl>
    1 EWR           120835          15.1
    2 JFK           111279          12.1
    3 LGA           104662          10.4
    # 输出格式化结果
    result %>%
        knitr::kable(caption = "纽约三大机场航班统计(2013年)") 
    纽约三大机场航班统计(2013年)
    origin total_flights avg_dep_delay
    EWR 120835 15.11
    JFK 111279 12.11
    LGA 104662 10.35
  • 计算不同航空公司2013从纽约起飞航班数和平均延误时间

    # 按航空公司分组统计
    result <- flights %>%
      left_join(airlines, by = "carrier") %>%        # 关联航空公司名称
      group_by(name) %>%                             # 按航空公司全名分组
      summarise(
        total_flights = n(),                         # 总航班数
        avg_dep_delay = mean(dep_delay, na.rm = TRUE),  # 平均起飞延误
        avg_arr_delay = mean(arr_delay, na.rm = TRUE)   # 平均到达延误(可选)
      ) %>%
      mutate(
        avg_dep_delay = round(avg_dep_delay, 2),      # 四舍五入保留两位小数
        avg_arr_delay = round(avg_arr_delay, 2)
      ) %>%
      arrange(desc(total_flights))                    # 按航班数降序排序
    
    # 查看结果
    print(result)
    # A tibble: 16 × 4
       name                        total_flights avg_dep_delay avg_arr_delay
       <chr>                               <int>         <dbl>         <dbl>
     1 United Air Lines Inc.               58665         12.1           3.56
     2 JetBlue Airways                     54635         13.0           9.46
     3 ExpressJet Airlines Inc.            54173         20.0          15.8 
     4 Delta Air Lines Inc.                48110          9.26          1.64
     5 American Airlines Inc.              32729          8.59          0.36
     6 Envoy Air                           26397         10.6          10.8 
     7 US Airways Inc.                     20536          3.78          2.13
     8 Endeavor Air Inc.                   18460         16.7           7.38
     9 Southwest Airlines Co.              12275         17.7           9.65
    10 Virgin America                       5162         12.9           1.76
    11 AirTran Airways Corporation          3260         18.7          20.1 
    12 Alaska Airlines Inc.                  714          5.8          -9.93
    13 Frontier Airlines Inc.                685         20.2          21.9 
    14 Mesa Airlines Inc.                    601         19            15.6 
    15 Hawaiian Airlines Inc.                342          4.9          -6.92
    16 SkyWest Airlines Inc.                  32         12.6          11.9 
  • 计算纽约三大机场排名前三个目的地和平均飞行距离(可使用group_by, summarise, arrange, slice_max函数)

    # 计算每个机场的前三目的地及其平均飞行距离
    result <- flights %>%
      # 按出发机场和目的地分组
      group_by(origin, dest) %>%
      # 计算航班次数和平均距离
      summarise(
        flights_count = n(),
        avg_distance = round(mean(distance, na.rm = TRUE), 1),
        .groups = "drop"
      ) %>%
      # 按出发机场分组,选择航班次数前三的目的地
      group_by(origin) %>%
      slice_max(flights_count, n = 3) %>%
      # 按出发机场和航班次数排序
      arrange(origin, desc(flights_count)) %>%
      ungroup()
    # 查看结果
    print(result, n = nrow(result))
    # A tibble: 9 × 4
      origin dest  flights_count avg_distance
      <chr>  <chr>         <int>        <dbl>
    1 EWR    ORD            6100          719
    2 EWR    BOS            5327          200
    3 EWR    SFO            5127         2565
    4 JFK    LAX           11262         2475
    5 JFK    SFO            8204         2586
    6 JFK    BOS            5898          187
    7 LGA    ATL           10263          762
    8 LGA    ORD            8857          733
    9 LGA    CLT            6168          544

2 第二题 解释代码

  1. 代码含义:

    # 对鸢尾花数据按物种分组,并在组内优先展示萼片更大(长度和宽度)的观测值。
    tibble(iris) %>% 
      arrange(Species,across(starts_with("Sepal"), desc))
    # A tibble: 150 × 5
       Sepal.Length Sepal.Width Petal.Length Petal.Width Species
              <dbl>       <dbl>        <dbl>       <dbl> <fct>  
     1          5.8         4            1.2         0.2 setosa 
     2          5.7         4.4          1.5         0.4 setosa 
     3          5.7         3.8          1.7         0.3 setosa 
     4          5.5         4.2          1.4         0.2 setosa 
     5          5.5         3.5          1.3         0.2 setosa 
     6          5.4         3.9          1.7         0.4 setosa 
     7          5.4         3.9          1.3         0.4 setosa 
     8          5.4         3.7          1.5         0.2 setosa 
     9          5.4         3.4          1.7         0.2 setosa 
    10          5.4         3.4          1.5         0.4 setosa 
    # ℹ 140 more rows
  2. 代码含义:

    # 输出一个数据框,包含每个性别组中质量高于该组平均值的角色信息。
    starwars %>% 
      group_by(gender) %>% 
      filter(mass > mean(mass, na.rm = TRUE))
    # A tibble: 15 × 14
    # Groups:   gender [3]
       name    height   mass hair_color skin_color eye_color birth_year sex   gender
       <chr>    <int>  <dbl> <chr>      <chr>      <chr>          <dbl> <chr> <chr> 
     1 Darth …    202  136   none       white      yellow          41.9 male  mascu…
     2 Owen L…    178  120   brown, gr… light      blue            52   male  mascu…
     3 Beru W…    165   75   brown      light      blue            47   fema… femin…
     4 Chewba…    228  112   brown      unknown    blue           200   male  mascu…
     5 Jabba …    175 1358   <NA>       green-tan… orange         600   herm… mascu…
     6 Jek To…    180  110   brown      fair       blue            NA   <NA>  <NA>  
     7 IG-88      200  140   none       metal      red             15   none  mascu…
     8 Bossk      190  113   none       green      red             53   male  mascu…
     9 Ayla S…    178   55   none       blue       hazel           48   fema… femin…
    10 Gregar…    185   85   black      dark       brown           NA   <NA>  <NA>  
    11 Lumina…    170   56.2 black      yellow     blue            58   fema… femin…
    12 Zam We…    168   55   blonde     fair, gre… yellow          NA   fema… femin…
    13 Shaak …    178   57   none       red, blue… black           NA   fema… femin…
    14 Grievo…    216  159   none       brown, wh… green, y…       NA   male  mascu…
    15 Tarfful    234  136   brown      brown      blue            NA   male  mascu…
    # ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
    #   vehicles <list>, starships <list>
  3. 代码含义:

    # 将字符型的分类变量转换为因子类型
    starwars %>%
      select(name, homeworld, species) %>%
      mutate(across(!name, as.factor))
    # A tibble: 87 × 3
       name               homeworld species
       <chr>              <fct>     <fct>  
     1 Luke Skywalker     Tatooine  Human  
     2 C-3PO              Tatooine  Droid  
     3 R2-D2              Naboo     Droid  
     4 Darth Vader        Tatooine  Human  
     5 Leia Organa        Alderaan  Human  
     6 Owen Lars          Tatooine  Human  
     7 Beru Whitesun Lars Tatooine  Human  
     8 R5-D4              Tatooine  Droid  
     9 Biggs Darklighter  Tatooine  Human  
    10 Obi-Wan Kenobi     Stewjon   Human  
    # ℹ 77 more rows
  4. 代码含义:

    # 对数据集进行分组和变量转换,最终生成一个新数据框。
    tibble(mtcars) %>%
      group_by(vs) %>%
      mutate(hp_cut = cut(hp, 3)) %>%
      group_by(hp_cut)
    # A tibble: 32 × 12
    # Groups:   hp_cut [6]
         mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb hp_cut     
       <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct>      
     1  21       6  160    110  3.9   2.62  16.5     0     1     4     4 (90.8,172] 
     2  21       6  160    110  3.9   2.88  17.0     0     1     4     4 (90.8,172] 
     3  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1 (75.7,99.3]
     4  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1 (99.3,123] 
     5  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2 (172,254]  
     6  18.1     6  225    105  2.76  3.46  20.2     1     0     3     1 (99.3,123] 
     7  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4 (172,254]  
     8  24.4     4  147.    62  3.69  3.19  20       1     0     4     2 (51.9,75.7]
     9  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2 (75.7,99.3]
    10  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4 (99.3,123] 
    # ℹ 22 more rows

3 第三题 查找帮助理解函数

阅读 https://dplyr.tidyverse.org/reference/mutate-joins.html 内容,说明4个数据集链接函数函数的作用。分别举一个实际例子演示并解释其输出结果。

  1. inner_join()

    # 作用:保留两个表中 完全匹配的行(交集),丢弃不匹配的行。
    
    employees <- tibble(
      id = c(1, 2, 3),
      name = c("Alice", "Bob", "Charlie")
    )
    
    departments <- tibble(
      id = c(2, 3, 4),
      dept = c("Sales", "IT", "HR")
    )
    
    inner_join(employees, departments, by = "id")
    # A tibble: 2 × 3
         id name    dept 
      <dbl> <chr>   <chr>
    1     2 Bob     Sales
    2     3 Charlie IT   
  2. left_join()

    #作用:保留左表所有行,右表无匹配时填充 NA。
    left_join(employees, departments, by = "id")
    # A tibble: 3 × 3
         id name    dept 
      <dbl> <chr>   <chr>
    1     1 Alice   <NA> 
    2     2 Bob     Sales
    3     3 Charlie IT   
  3. right_join()

    #作用:保留右表所有行,左表无匹配时填充 NA。
    right_join(employees, departments, by = "id")
    # A tibble: 3 × 3
         id name    dept 
      <dbl> <chr>   <chr>
    1     2 Bob     Sales
    2     3 Charlie IT   
    3     4 <NA>    HR   
  4. full_join()

    #作用:保留两个表的所有行,无匹配时填充 NA(并集)。
    full_join(employees, departments, by = "id")
    # A tibble: 4 × 3
         id name    dept 
      <dbl> <chr>   <chr>
    1     1 Alice   <NA> 
    2     2 Bob     Sales
    3     3 Charlie IT   
    4     4 <NA>    HR