Introduction
In this assignment, we explore the mtcars dataset, which contains
information about various car models.
mpg: Miles per gallon (Numeric)
cyl: Number of cylinders (Numeric)
disp: Displacement Numeric cubic (inches)
hp: Gross horsepower Numeric (hp)
drat: Rear axle ratio Numeric (ratio)
wt: Weight Numeric (1000 lbs)
qsec:1/4 mile time Numeric (seconds)
vs V/S engine (0 = V-shaped, 1 = straight) Numeric (binary)
am Transmission (0 = automatic, 1 = manual) Numeric (binary)
gear Number of forward gears Numeric (gears)
carb Number of carburetors Numeric (carburetors)
#install.packages("tidyverse")
library(tidyverse) # Load the tidyverse package for data manipulation and visualization
── Attaching core tidyverse packages ──────────────────────────────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.4 ✔ readr 2.1.5
✔ forcats 1.0.0 ✔ stringr 1.5.1
✔ ggplot2 3.5.1 ✔ tibble 3.2.1
✔ lubridate 1.9.4 ✔ tidyr 1.3.1
✔ purrr 1.0.4
── Conflicts ────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all conflicts to become errors
library(ggplot2) # Load ggplot2 for creating plots
# Load the mtcars dataset (built into R)
data_mtcars <- mtcars
# View the first few rows to understand the data
head(data_mtcars)
# Convert 'am' (transmission type) and 'cyl' (number of cylinders) to factors for categorical plotting
data_mtcars$am <- as.factor(data_mtcars$am)
data_mtcars$cyl <- as.factor(data_mtcars$cyl)
Scatter Plot
# Create a scatter plot of car weight vs. miles per gallon, colored by cylinder count
ggplot(data_mtcars, aes(x = wt, y = mpg, color = cyl)) +
geom_point() + # Add points to the plot
labs(title = "Weight vs. Miles Per Gallon", x = "Weight (1000 lbs)", y = "Miles Per Gallon") # Add plot labels

Line Graph
#Create a line graph of ordered mpg by the row number.
data_mtcars_line <- data_mtcars %>% mutate(index = row_number()) #add index column so we can plot it
ggplot(data_mtcars_line, aes(x = index, y = mpg)) +
geom_line() + # add a line to the plot
labs(title = "Miles Per Gallon by Index", x = "Index", y = "Miles Per Gallon") # add plot labels

Horizontal Bar Chart
# Create a horizontal bar chart of the average horsepower grouped by cylinder count
hp_by_cyl <- data_mtcars %>% group_by(cyl) %>% summarize(avg_hp = mean(hp)) # Calculate average horsepower for each cylinder group
ggplot(hp_by_cyl, aes(y = cyl, x = avg_hp)) +
geom_bar(stat = 'identity') + # Create bars based on the calculated averages
labs(title = "Average HP by Cylinder Count", y = "Cylinder Count", x = "Average Horsepower") # Add plot labels

Stacked Bar Chart
#Create a stacked bar chart of average mpg, disp, hp, and wt, grouped by cyl.
bar_data_mtcars <- data_mtcars %>% group_by(cyl) %>% summarize(mpg = mean(mpg), disp = mean(disp), hp = mean(hp), wt = mean(wt)) %>% pivot_longer(cols = c("mpg", "disp", "hp", "wt"), names_to = "Measurement", values_to = "Average") #Calculate average values for each measurement, and pivot the data into a long format.
ggplot(bar_data_mtcars, aes(x = cyl, fill = Measurement, y = Average)) +
geom_bar(stat = "identity") + #Create bars based on the calculated averages
labs(title = "Average Measurements by Cylinder Count", x = "Cylinder Count", y = "Average Measurement") #add plot labels

LS0tCnRpdGxlOiAibXRjYXJzIERhdGFzZXQgVmlzdWFsaXphdGlvbiIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKKipJbnRyb2R1Y3Rpb24qKgoKSW4gdGhpcyBhc3NpZ25tZW50LCB3ZSBleHBsb3JlIHRoZSBtdGNhcnMgZGF0YXNldCwgd2hpY2ggY29udGFpbnMgaW5mb3JtYXRpb24gYWJvdXQgdmFyaW91cyBjYXIgbW9kZWxzLgoKbXBnOiBNaWxlcyBwZXIgZ2FsbG9uIChOdW1lcmljKQoKY3lsOiBOdW1iZXIgb2YgY3lsaW5kZXJzIChOdW1lcmljKQoKZGlzcDogRGlzcGxhY2VtZW50IE51bWVyaWMgY3ViaWMgKGluY2hlcykKCmhwOiBHcm9zcyBob3JzZXBvd2VyIE51bWVyaWMgKGhwKQoKZHJhdDogUmVhciBheGxlIHJhdGlvIE51bWVyaWMgKHJhdGlvKQoKd3Q6IFdlaWdodCBOdW1lcmljICgxMDAwIGxicykKCnFzZWM6MS80IG1pbGUgdGltZSBOdW1lcmljIChzZWNvbmRzKQoKdnMgVi9TIGVuZ2luZSAoMCA9IFYtc2hhcGVkLCAxID0gc3RyYWlnaHQpIE51bWVyaWMgKGJpbmFyeSkKCmFtIFRyYW5zbWlzc2lvbiAoMCA9IGF1dG9tYXRpYywgMSA9IG1hbnVhbCkgTnVtZXJpYyAoYmluYXJ5KQoKZ2VhciBOdW1iZXIgb2YgZm9yd2FyZCBnZWFycyBOdW1lcmljIChnZWFycykKCmNhcmIgTnVtYmVyIG9mIGNhcmJ1cmV0b3JzIE51bWVyaWMgKGNhcmJ1cmV0b3JzKQoKCgpgYGB7cn0KI2luc3RhbGwucGFja2FnZXMoInRpZHl2ZXJzZSIpCmBgYAoKYGBge3J9CmxpYnJhcnkodGlkeXZlcnNlKSAjIExvYWQgdGhlIHRpZHl2ZXJzZSBwYWNrYWdlIGZvciBkYXRhIG1hbmlwdWxhdGlvbiBhbmQgdmlzdWFsaXphdGlvbgpsaWJyYXJ5KGdncGxvdDIpICMgTG9hZCBnZ3Bsb3QyIGZvciBjcmVhdGluZyBwbG90cwoKIyBMb2FkIHRoZSBtdGNhcnMgZGF0YXNldCAoYnVpbHQgaW50byBSKQpkYXRhX210Y2FycyA8LSBtdGNhcnMKCiMgVmlldyB0aGUgZmlyc3QgZmV3IHJvd3MgdG8gdW5kZXJzdGFuZCB0aGUgZGF0YQpoZWFkKGRhdGFfbXRjYXJzKQpgYGAKCgpgYGB7cn0KIyBDb252ZXJ0ICdhbScgKHRyYW5zbWlzc2lvbiB0eXBlKSBhbmQgJ2N5bCcgKG51bWJlciBvZiBjeWxpbmRlcnMpIHRvIGZhY3RvcnMgZm9yIGNhdGVnb3JpY2FsIHBsb3R0aW5nCmRhdGFfbXRjYXJzJGFtIDwtIGFzLmZhY3RvcihkYXRhX210Y2FycyRhbSkKZGF0YV9tdGNhcnMkY3lsIDwtIGFzLmZhY3RvcihkYXRhX210Y2FycyRjeWwpCmBgYAoKKipTY2F0dGVyIFBsb3QqKgoKYGBge3J9CiMgQ3JlYXRlIGEgc2NhdHRlciBwbG90IG9mIGNhciB3ZWlnaHQgdnMuIG1pbGVzIHBlciBnYWxsb24sIGNvbG9yZWQgYnkgY3lsaW5kZXIgY291bnQKZ2dwbG90KGRhdGFfbXRjYXJzLCBhZXMoeCA9IHd0LCB5ID0gbXBnLCBjb2xvciA9IGN5bCkpICsKICBnZW9tX3BvaW50KCkgKyAjIEFkZCBwb2ludHMgdG8gdGhlIHBsb3QKICBsYWJzKHRpdGxlID0gIldlaWdodCB2cy4gTWlsZXMgUGVyIEdhbGxvbiIsIHggPSAiV2VpZ2h0ICgxMDAwIGxicykiLCB5ID0gIk1pbGVzIFBlciBHYWxsb24iKSAjIEFkZCBwbG90IGxhYmVscwpgYGAKCgoqKkxpbmUgR3JhcGgqKgoKYGBge3J9CiNDcmVhdGUgYSBsaW5lIGdyYXBoIG9mIG9yZGVyZWQgbXBnIGJ5IHRoZSByb3cgbnVtYmVyLgpkYXRhX210Y2Fyc19saW5lIDwtIGRhdGFfbXRjYXJzICU+JSBtdXRhdGUoaW5kZXggPSByb3dfbnVtYmVyKCkpICNhZGQgaW5kZXggY29sdW1uIHNvIHdlIGNhbiBwbG90IGl0CgpnZ3Bsb3QoZGF0YV9tdGNhcnNfbGluZSwgYWVzKHggPSBpbmRleCwgeSA9IG1wZykpICsKICBnZW9tX2xpbmUoKSArICMgYWRkIGEgbGluZSB0byB0aGUgcGxvdAogIGxhYnModGl0bGUgPSAiTWlsZXMgUGVyIEdhbGxvbiBieSBJbmRleCIsIHggPSAiSW5kZXgiLCB5ID0gIk1pbGVzIFBlciBHYWxsb24iKSAjIGFkZCBwbG90IGxhYmVscwpgYGAKCgoqKkhvcml6b250YWwgQmFyIENoYXJ0KioKCmBgYHtyfQojIENyZWF0ZSBhIGhvcml6b250YWwgYmFyIGNoYXJ0IG9mIHRoZSBhdmVyYWdlIGhvcnNlcG93ZXIgZ3JvdXBlZCBieSBjeWxpbmRlciBjb3VudApocF9ieV9jeWwgPC0gZGF0YV9tdGNhcnMgJT4lIGdyb3VwX2J5KGN5bCkgJT4lIHN1bW1hcml6ZShhdmdfaHAgPSBtZWFuKGhwKSkgIyBDYWxjdWxhdGUgYXZlcmFnZSBob3JzZXBvd2VyIGZvciBlYWNoIGN5bGluZGVyIGdyb3VwCgpnZ3Bsb3QoaHBfYnlfY3lsLCBhZXMoeSA9IGN5bCwgeCA9IGF2Z19ocCkpICsKICBnZW9tX2JhcihzdGF0ID0gJ2lkZW50aXR5JykgKyAjIENyZWF0ZSBiYXJzIGJhc2VkIG9uIHRoZSBjYWxjdWxhdGVkIGF2ZXJhZ2VzCiAgbGFicyh0aXRsZSA9ICJBdmVyYWdlIEhQIGJ5IEN5bGluZGVyIENvdW50IiwgeSA9ICJDeWxpbmRlciBDb3VudCIsIHggPSAiQXZlcmFnZSBIb3JzZXBvd2VyIikgIyBBZGQgcGxvdCBsYWJlbHMKYGBgCgoKKipTdGFja2VkIEJhciBDaGFydCoqCgpgYGB7cn0KI0NyZWF0ZSBhIHN0YWNrZWQgYmFyIGNoYXJ0IG9mIGF2ZXJhZ2UgbXBnLCBkaXNwLCBocCwgYW5kIHd0LCBncm91cGVkIGJ5IGN5bC4KYmFyX2RhdGFfbXRjYXJzIDwtIGRhdGFfbXRjYXJzICU+JSBncm91cF9ieShjeWwpICU+JSBzdW1tYXJpemUobXBnID0gbWVhbihtcGcpLCBkaXNwID0gbWVhbihkaXNwKSwgaHAgPSBtZWFuKGhwKSwgd3QgPSBtZWFuKHd0KSkgJT4lIHBpdm90X2xvbmdlcihjb2xzID0gYygibXBnIiwgImRpc3AiLCAiaHAiLCAid3QiKSwgbmFtZXNfdG8gPSAiTWVhc3VyZW1lbnQiLCB2YWx1ZXNfdG8gPSAiQXZlcmFnZSIpICNDYWxjdWxhdGUgYXZlcmFnZSB2YWx1ZXMgZm9yIGVhY2ggbWVhc3VyZW1lbnQsIGFuZCBwaXZvdCB0aGUgZGF0YSBpbnRvIGEgbG9uZyBmb3JtYXQuCgpnZ3Bsb3QoYmFyX2RhdGFfbXRjYXJzLCBhZXMoeCA9IGN5bCwgZmlsbCA9IE1lYXN1cmVtZW50LCB5ID0gQXZlcmFnZSkpICsKICBnZW9tX2JhcihzdGF0ID0gImlkZW50aXR5IikgKyAjQ3JlYXRlIGJhcnMgYmFzZWQgb24gdGhlIGNhbGN1bGF0ZWQgYXZlcmFnZXMKICBsYWJzKHRpdGxlID0gIkF2ZXJhZ2UgTWVhc3VyZW1lbnRzIGJ5IEN5bGluZGVyIENvdW50IiwgeCA9ICJDeWxpbmRlciBDb3VudCIsIHkgPSAiQXZlcmFnZSBNZWFzdXJlbWVudCIpICNhZGQgcGxvdCBsYWJlbHMKYGBgCgo=