This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
library(class)
## Warning: package 'class' was built under R version 4.4.3
library(gmodels)
## Warning: package 'gmodels' was built under R version 4.4.3
data(iris)
str(iris)
## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
summary(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
## Species
## setosa :50
## versicolor:50
## virginica :50
##
##
##
table(iris$Species)
##
## setosa versicolor virginica
## 50 50 50
set.seed(123)
ind <- sample(2, nrow(iris), replace = TRUE, prob = c(0.7, 0.3))
print(ind)
## [1] 1 2 1 2 2 1 1 2 1 1 2 1 1 1 1 2 1 1 1 2 2 1 1 2 1 2 1 1 1 1 2 2 1 2 1 1 2
## [38] 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 2 2 1 1 1 1 1 2 1 2 2 2 1 2 1 2 1
## [75] 1 1 1 1 1 1 1 1 1 2 1 1 2 2 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 2 2 1 1 1 2
## [112] 1 1 2 2 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 2 1 1 2 2 2 1 1 1 1 1 2 1 1 1
## [149] 1 2
trainData <- iris[ind == 1, ]
testData <- iris[ind == 2, ]
trainData1 <- trainData[, -5]
testData1 <- testData[, -5]
str(trainData1)
## 'data.frame': 106 obs. of 4 variables:
## $ Sepal.Length: num 5.1 4.7 5.4 4.6 4.4 4.9 4.8 4.8 4.3 5.8 ...
## $ Sepal.Width : num 3.5 3.2 3.9 3.4 2.9 3.1 3.4 3 3 4 ...
## $ Petal.Length: num 1.4 1.3 1.7 1.4 1.4 1.5 1.6 1.4 1.1 1.2 ...
## $ Petal.Width : num 0.2 0.2 0.4 0.3 0.2 0.1 0.2 0.1 0.1 0.2 ...
str(testData1)
## 'data.frame': 44 obs. of 4 variables:
## $ Sepal.Length: num 4.9 4.6 5 5 5.4 5.7 5.1 5.4 5.1 5 ...
## $ Sepal.Width : num 3 3.1 3.6 3.4 3.7 4.4 3.8 3.4 3.3 3 ...
## $ Petal.Length: num 1.4 1.5 1.4 1.5 1.5 1.5 1.5 1.7 1.7 1.6 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.5 0.2 ...
trainLabels <- trainData$Species
testLabels <- testData$Species
test_pred <- knn(train = trainData1, test = testData1, cl = trainLabels, k = 3)
CrossTable(x = testLabels, y = test_pred, prop.chisq = FALSE)
##
##
## Cell Contents
## |-------------------------|
## | N |
## | N / Row Total |
## | N / Col Total |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 44
##
##
## | test_pred
## testLabels | setosa | versicolor | virginica | Row Total |
## -------------|------------|------------|------------|------------|
## setosa | 15 | 0 | 0 | 15 |
## | 1.000 | 0.000 | 0.000 | 0.341 |
## | 1.000 | 0.000 | 0.000 | |
## | 0.341 | 0.000 | 0.000 | |
## -------------|------------|------------|------------|------------|
## versicolor | 0 | 12 | 2 | 14 |
## | 0.000 | 0.857 | 0.143 | 0.318 |
## | 0.000 | 0.923 | 0.125 | |
## | 0.000 | 0.273 | 0.045 | |
## -------------|------------|------------|------------|------------|
## virginica | 0 | 1 | 14 | 15 |
## | 0.000 | 0.067 | 0.933 | 0.341 |
## | 0.000 | 0.077 | 0.875 | |
## | 0.000 | 0.023 | 0.318 | |
## -------------|------------|------------|------------|------------|
## Column Total | 15 | 13 | 16 | 44 |
## | 0.341 | 0.295 | 0.364 | |
## -------------|------------|------------|------------|------------|
##
##
accuracy <- sum(testLabels == test_pred) / length(testLabels)
print(paste("Model Accuracy:", round(accuracy * 100, 2), "%"))
## [1] "Model Accuracy: 93.18 %"
You can also embed plots, for example:
Note that the echo = FALSE
parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.