diamonds %>%
ggplot(aes(x = cut)) +
geom_bar(fill = "orange")
diamonds %>%
ggplot(mapping = aes(x = carat)) +
geom_histogram(binwidth = 0.5, fill = "red")
diamonds %>%
filter(carat < 3) %>%
ggplot(aes(x = carat)) +
geom_histogram(binwidth = 0.7, fill = "Turquoise")
diamonds %>%
ggplot(aes(x = carat, color = cut)) +
geom_freqpoly()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
diamonds %>%
#Filter out diamonds < 3
filter(carat < 3) %>%
#Plot
ggplot(aes(x = carat)) +
geom_histogram(binwidth = 0.01, fill = "pink")
faithful %>%
ggplot(aes(eruptions)) +
geom_histogram(binwidth = 0.25, fill = "green")
diamonds %>%
ggplot(aes(y)) +
geom_histogram(fill= "maroon") +
coord_cartesian(ylim = c(0, 50))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
diamonds %>%
# filter(y < 3 | y > 20) %>%
mutate(y = ifelse(y < 3 | y > 20, NA, y)) %>%
# Plot
ggplot(aes(x = x, y = y)) +
geom_point()
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_point()`).
diamonds %>%
ggplot(aes(x = cut, y = price)) +
geom_boxplot(fill = "black")
diamonds %>%
count(color,cut) %>%
ggplot(aes(x = color, y = cut, fill = n)) +
geom_tile()
library(hexbin)
## Warning: package 'hexbin' was built under R version 4.4.3
diamonds %>%
ggplot(aes(x = carat, y = price)) +
geom_hex()
diamonds %>%
ggplot(aes(x = carat, y = price)) +
geom_boxplot(aes(group = cut_width(carat, 0.1)))
## Paterns and Models
library(modelr)
## Warning: package 'modelr' was built under R version 4.4.3
mod <- lm(log(price) ~ log(carat), data = diamonds)
diamonds4 <- diamonds %>%
modelr::add_residuals(mod) %>%
mutate(resid = exp(resid))
diamonds4 %>%
ggplot(aes(carat, resid)) +
geom_point()
diamonds4 %>%
ggplot(aes(cut, resid)) +
geom_boxplot(fill= "navy")