Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
ℹ Please use `after_stat(density)` instead.
2. Factor analysis
Parallel analysis suggests that the number of factors = 2 and the number of components = NA
Factor Analysis using method = minres
Call: fa(r = data_efa_1, nfactors = 2, rotate = "varimax")
Unstandardized loadings (pattern matrix) based upon covariance matrix
MR1 MR2 h2 u2 H2 U2
EEC1 0.60 NA NA 0.65 NA NA
EEC2 0.87 NA NA 0.23 NA NA
EEC3 0.59 NA NA 0.63 NA NA
EEC4 0.84 NA NA 0.28 NA NA
EEF1 0.88 NA NA 0.22 NA NA
EEF2 0.82 NA NA 0.29 NA NA
EEF3 0.76 NA NA 0.40 NA NA
WTA1 0.63 NA NA 0.56 NA NA
WTA2 0.56 NA NA 0.63 NA NA
WTA3 0.69 0.41 0.64 0.36 0.64 0.36
WTA4 0.63 NA NA 0.49 NA NA
PA1 NA NA NA 0.86 NA NA
PA2 NA -0.81 NA 0.33 NA NA
PA3 NA -0.76 NA 0.41 NA NA
PSP NA -0.43 NA 0.81 NA NA
EO 0.51 NA NA 0.74 NA NA
TO NA NA NA 0.94 NA NA
ADT 0.42 0.48 0.41 0.59 0.41 0.59
MR1 MR2
SS loadings NA NA
Proportion Var NA NA
Cumulative Var NA NA
Proportion Explained NA NA
Cumulative Proportion NA NA
Standardized loadings (pattern matrix)
item MR1 MR2 h2 u2
EEC1 1 NA NA NA NA
EEC2 2 NA NA NA NA
EEC3 3 NA NA NA NA
EEC4 4 NA NA NA NA
EEF1 5 NA NA NA NA
EEF2 6 NA NA NA NA
EEF3 7 NA NA NA NA
WTA1 8 NA NA NA NA
WTA2 9 NA NA NA NA
WTA3 10 0.69 0.41 0.64 0.36
WTA4 11 NA NA NA NA
PA1 12 NA NA NA NA
PA2 13 NA NA NA NA
PA3 14 NA NA NA NA
PSP 15 NA NA NA NA
EO 16 NA NA NA NA
TO 17 NA NA NA NA
ADT 18 0.42 0.48 0.41 0.59
MR1 MR2
SS loadings NA NA
Proportion Var NA NA
Cumulative Var NA NA
Cum. factor Var NA NA
Mean item complexity = 1.2
Test of the hypothesis that 2 factors are sufficient.
df null model = 153 with the objective function = 12.54 with Chi Square = 654.07
df of the model are 118 and the objective function was 3.76
The root mean square of the residuals (RMSR) is 0.07
The df corrected root mean square of the residuals is 0.08
The harmonic n.obs is 60 with the empirical chi square 97.83 with prob < 0.91
The total n.obs was 60 with Likelihood Chi Square = 190.94 with prob < 2.5e-05
Tucker Lewis Index of factoring reliability = 0.805
RMSEA index = 0.1 and the 90 % confidence intervals are 0.075 0.128
BIC = -292.2
Fit based upon off diagonal values = 0.97
Measures of factor score adequacy
MR1 MR2
Correlation of (regression) scores with factors 0.97 0.91
Multiple R square of scores with factors 0.94 0.83
Minimum correlation of possible factor scores 0.88 0.66
Warning: lavaan->lav_model_vcov():
The variance-covariance matrix of the estimated parameters (vcov) does not
appear to be positive definite! The smallest eigenvalue (= 8.044271e-15)
is close to zero. This may be a symptom that the model is not identified.
summary(fit1, ci =TRUE, fit.measures=TRUE, rsquare=TRUE,standardized=TRUE)
Factor Analysis using method = minres
Call: fa(r = data_efa_1, nfactors = 1, rotate = "none")
Standardized loadings (pattern matrix) based upon correlation matrix
MR1 h2 u2 com
EEC1 0.56 0.311 0.69 1
EEC2 0.83 0.694 0.31 1
EEC3 0.61 0.374 0.63 1
EEC4 0.83 0.695 0.30 1
EEF1 0.81 0.653 0.35 1
EEF2 0.84 0.709 0.29 1
EEF3 0.77 0.598 0.40 1
WTA1 0.67 0.445 0.55 1
WTA2 0.61 0.371 0.63 1
WTA3 0.79 0.628 0.37 1
WTA4 0.71 0.509 0.49 1
PA1 -0.18 0.032 0.97 1
PA2 -0.40 0.160 0.84 1
PA3 -0.34 0.115 0.89 1
PSP -0.22 0.047 0.95 1
EO 0.47 0.218 0.78 1
TO 0.11 0.012 0.99 1
ADT 0.56 0.311 0.69 1
MR1
SS loadings 6.88
Proportion Var 0.38
Mean item complexity = 1
Test of the hypothesis that 1 factor is sufficient.
df null model = 153 with the objective function = 12.54 with Chi Square = 654.07
df of the model are 135 and the objective function was 5.15
The root mean square of the residuals (RMSR) is 0.11
The df corrected root mean square of the residuals is 0.12
The harmonic n.obs is 60 with the empirical chi square 233.27 with prob < 3.2e-07
The total n.obs was 60 with Likelihood Chi Square = 265.2 with prob < 1.6e-10
Tucker Lewis Index of factoring reliability = 0.701
RMSEA index = 0.126 and the 90 % confidence intervals are 0.105 0.15
BIC = -287.54
Fit based upon off diagonal values = 0.92
Measures of factor score adequacy
MR1
Correlation of (regression) scores with factors 0.97
Multiple R square of scores with factors 0.94
Minimum correlation of possible factor scores 0.89
CFA
model1 <-'#Testing common method bias using CFA # Measurement model EEC =~ EEC1 + EEC2 + EEC3 + EEC4 EEF =~ EEF1 + EEF2 + EEF3 WTA =~ WTA1 + WTA2 + WTA3 + WTA4 PA =~ PA1 + PA2 + PA3 PerceivedS =~ PSP Environ =~ EO TechScie =~ TO Atti =~ ADT # Common method factor CMF =~ EEC1 + EEC2 + EEC3 + EEC4 + EEF1 + EEF2 + EEF3 + WTA1 + WTA2 + WTA3 + WTA4 + PA1 + PA2 + PA3 + PSP + EO + TO + ADT'fit1<-cfa(model1, data = data_efa_1, estimator ="MLR")
Warning: lavaan->lav_model_vcov():
Could not compute standard errors! The information matrix could not be
inverted. This may be a symptom that the model is not identified.
Warning: lavaan->lav_test_yuan_bentler():
could not invert information [matrix needed for robust test statistic
Warning: lavaan->lav_object_post_check():
some estimated lv variances are negative
lavaan 0.6-19 ended normally after 113 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 90
Number of observations 60
Model Test User Model:
Standard Scaled
Test Statistic 110.527 NA
Degrees of freedom 81 81
P-value (Chi-square) 0.016 NA
Scaling correction factor NA
Model Test Baseline Model:
Test statistic 752.281 714.007
Degrees of freedom 153 153
P-value 0.000 0.000
Scaling correction factor 1.054
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.951 NA
Tucker-Lewis Index (TLI) 0.907 NA
Robust Comparative Fit Index (CFI) NA
Robust Tucker-Lewis Index (TLI) NA
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -1580.669 -1580.669
Loglikelihood unrestricted model (H1) -1525.405 -1525.405
Akaike (AIC) 3341.338 3341.338
Bayesian (BIC) 3529.829 3529.829
Sample-size adjusted Bayesian (SABIC) 3246.755 3246.755
Root Mean Square Error of Approximation:
RMSEA 0.078 NA
90 Percent confidence interval - lower 0.035 NA
90 Percent confidence interval - upper 0.112 NA
P-value H_0: RMSEA <= 0.050 0.119 NA
P-value H_0: RMSEA >= 0.080 0.482 NA
Robust RMSEA NA
90 Percent confidence interval - lower NA
90 Percent confidence interval - upper NA
P-value H_0: Robust RMSEA <= 0.050 NA
P-value H_0: Robust RMSEA >= 0.080 NA
Standardized Root Mean Square Residual:
SRMR 0.057 0.057
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.188 0.136
EEC2 1.409 NA 0.264 0.204
EEC3 0.940 NA 0.176 0.137
EEC4 1.321 NA 0.248 0.195
EEF =~
EEF1 1.000 0.745 0.546
EEF2 1.018 NA 0.759 0.543
EEF3 0.926 NA 0.690 0.478
WTA =~
WTA1 1.000 0.974 0.516
WTA2 1.018 NA 0.992 0.540
WTA3 1.117 NA 1.088 0.701
WTA4 0.939 NA 0.915 0.633
PA =~
PA1 1.000 0.640 0.379
PA2 2.247 NA 1.439 0.907
PA3 1.893 NA 1.213 0.809
PerceivedS =~
PSP 1.000 0.468 0.599
Environ =~
EO 1.000 0.669 0.530
TechScie =~
TO 1.000 1.038 0.727
Atti =~
ADT 1.000 0.789 0.600
CMF =~
EEC1 1.000 NA NA
EEC2 1.511 NA NA NA
EEC3 0.533 NA NA NA
EEC4 1.238 NA NA NA
EEF1 1.032 NA NA NA
EEF2 0.955 NA NA NA
EEF3 1.302 NA NA NA
WTA1 0.941 NA NA NA
WTA2 1.065 NA NA NA
WTA3 0.609 NA NA NA
WTA4 0.939 NA NA NA
PA1 -0.391 NA NA NA
PA2 -0.394 NA NA NA
PA3 -0.231 NA NA NA
PSP -0.211 NA NA NA
EO 0.581 NA NA NA
TO 0.237 NA NA NA
ADT 0.703 NA NA NA
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC ~~
EEF 0.135 NA 0.961 0.961
WTA 0.028 NA 0.152 0.152
PA -0.086 NA -0.712 -0.712
PerceivedS -0.217 NA -2.477 -2.477
Environ -0.086 NA -0.683 -0.683
TechScie 0.226 NA 1.159 1.159
Atti 0.066 NA 0.442 0.442
CMF 0.753 NA 4.442 4.442
EEF ~~
WTA 0.290 NA 0.399 0.399
PA -0.157 NA -0.328 -0.328
PerceivedS -0.260 NA -0.746 -0.746
Environ 0.025 NA 0.050 0.050
TechScie 0.234 NA 0.303 0.303
Atti 0.174 NA 0.296 0.296
CMF 0.884 NA 1.314 1.314
WTA ~~
PA -0.266 NA -0.426 -0.426
PerceivedS -0.294 NA -0.644 -0.644
Environ 0.007 NA 0.011 0.011
TechScie 0.302 NA 0.298 0.298
Atti 0.267 NA 0.347 0.347
CMF 0.782 NA 0.889 0.889
PA ~~
PerceivedS 0.210 NA 0.701 0.701
Environ -0.012 NA -0.028 -0.028
TechScie -0.198 NA -0.298 -0.298
Atti -0.374 NA -0.740 -0.740
CMF -0.060 NA -0.104 -0.104
PerceivedS ~~
Environ 0.081 NA 0.258 0.258
TechScie -0.175 NA -0.361 -0.361
Atti -0.431 NA -1.168 -1.168
CMF 0.108 NA 0.256 0.256
Environ ~~
TechScie -0.122 NA -0.176 -0.176
Atti -0.093 NA -0.177 -0.177
CMF 0.665 NA 1.101 1.101
TechScie ~~
Atti 0.507 NA 0.619 0.619
CMF -0.112 NA -0.120 -0.120
Atti ~~
CMF 0.534 NA 0.749 0.749
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 1.186 NA 1.186 0.620
.EEC2 0.269 NA 0.269 0.160
.EEC3 1.116 NA 1.116 0.668
.EEC4 0.341 NA 0.341 0.211
.EEF1 0.349 NA 0.349 0.187
.EEF2 0.398 NA 0.398 0.204
.EEF3 0.858 NA 0.858 0.412
.WTA1 1.866 NA 1.866 0.523
.WTA2 1.622 NA 1.622 0.480
.WTA3 0.467 NA 0.467 0.193
.WTA4 0.590 NA 0.590 0.282
.PA1 2.523 NA 2.523 0.883
.PA2 0.465 NA 0.465 0.185
.PA3 0.768 NA 0.768 0.342
.PSP 0.474 NA 0.474 0.776
.EO 0.650 NA 0.650 0.407
.TO 1.058 NA 1.058 0.519
.ADT 0.758 NA 0.758 0.439
EEC 0.035 NA 1.000 1.000
EEF 0.556 NA 1.000 1.000
WTA 0.949 NA 1.000 1.000
PA 0.410 NA 1.000 1.000
PerceivedS 0.219 NA 1.000 1.000
Environ 0.448 NA 1.000 1.000
TechScie 1.077 NA 1.000 1.000
Atti 0.623 NA 1.000 1.000
CMF -0.815 NA NA NA
Parallel analysis suggests that the number of factors = 2 and the number of components = NA
Factor Analysis using method = minres
Call: fa(r = data_efa_2, nfactors = 2, rotate = "varimax")
Unstandardized loadings (pattern matrix) based upon covariance matrix
MR1 MR2 h2 u2 H2 U2
EEC1 0.70 NA NA 0.51 NA NA
EEC2 0.86 NA NA 0.26 NA NA
EEC3 0.60 NA NA 0.62 NA NA
EEC4 0.84 NA NA 0.26 NA NA
EEF1 0.82 NA NA 0.33 NA NA
EEF2 0.75 NA NA 0.36 NA NA
EEF3 0.64 NA NA 0.57 NA NA
WTA1 0.68 NA NA 0.53 NA NA
WTA2 0.57 NA NA 0.65 NA NA
WTA3 0.71 NA NA 0.40 NA NA
WTA4 0.75 NA NA 0.40 NA NA
PA1 NA 0.56 NA 0.69 NA NA
PA2 NA 0.77 NA 0.39 NA NA
PA3 NA 0.89 NA 0.20 NA NA
PSP NA NA NA 0.81 NA NA
EO 0.62 NA NA 0.61 NA NA
TO NA NA NA 0.89 NA NA
ADT NA -0.40 NA 0.74 NA NA
MR1 MR2
SS loadings NA NA
Proportion Var NA NA
Cumulative Var NA NA
Proportion Explained NA NA
Cumulative Proportion NA NA
Standardized loadings (pattern matrix)
item MR1 MR2 h2 u2
EEC1 1 NA NA NA NA
EEC2 2 NA NA NA NA
EEC3 3 NA NA NA NA
EEC4 4 NA NA NA NA
EEF1 5 NA NA NA NA
EEF2 6 NA NA NA NA
EEF3 7 NA NA NA NA
WTA1 8 NA NA NA NA
WTA2 9 NA NA NA NA
WTA3 10 NA NA NA NA
WTA4 11 NA NA NA NA
PA1 12 NA NA NA NA
PA2 13 NA NA NA NA
PA3 14 NA NA NA NA
PSP 15 NA NA NA NA
EO 16 NA NA NA NA
TO 17 NA NA NA NA
ADT 18 NA NA NA NA
MR1 MR2
SS loadings NA NA
Proportion Var NA NA
Cumulative Var NA NA
Cum. factor Var NA NA
Mean item complexity = 1.2
Test of the hypothesis that 2 factors are sufficient.
df null model = 153 with the objective function = 14.56 with Chi Square = 424.67
df of the model are 118 and the objective function was 5.88
The root mean square of the residuals (RMSR) is 0.08
The df corrected root mean square of the residuals is 0.09
The harmonic n.obs is 37 with the empirical chi square 70.77 with prob < 1
The total n.obs was 37 with Likelihood Chi Square = 163.67 with prob < 0.0035
Tucker Lewis Index of factoring reliability = 0.765
RMSEA index = 0.099 and the 90 % confidence intervals are 0.061 0.14
BIC = -262.42
Fit based upon off diagonal values = 0.96
Measures of factor score adequacy
MR1 MR2
Correlation of (regression) scores with factors 0.97 0.99
Multiple R square of scores with factors 0.94 0.97
Minimum correlation of possible factor scores 0.88 0.94
Warning: lavaan->lav_model_vcov():
The variance-covariance matrix of the estimated parameters (vcov) does not
appear to be positive definite! The smallest eigenvalue (= 8.044271e-15)
is close to zero. This may be a symptom that the model is not identified.
Factor Analysis using method = minres
Call: fa(r = data_efa_2, nfactors = 1, rotate = "none")
Standardized loadings (pattern matrix) based upon correlation matrix
MR1 h2 u2 com
EEC1 0.67 0.450 0.55 1
EEC2 0.82 0.677 0.32 1
EEC3 0.61 0.373 0.63 1
EEC4 0.86 0.736 0.26 1
EEF1 0.77 0.588 0.41 1
EEF2 0.80 0.643 0.36 1
EEF3 0.65 0.425 0.57 1
WTA1 0.68 0.463 0.54 1
WTA2 0.60 0.356 0.64 1
WTA3 0.78 0.602 0.40 1
WTA4 0.77 0.599 0.40 1
PA1 -0.21 0.045 0.95 1
PA2 -0.32 0.101 0.90 1
PA3 -0.33 0.110 0.89 1
PSP -0.31 0.098 0.90 1
EO 0.61 0.376 0.62 1
TO 0.14 0.020 0.98 1
ADT 0.43 0.183 0.82 1
MR1
SS loadings 6.84
Proportion Var 0.38
Mean item complexity = 1
Test of the hypothesis that 1 factor is sufficient.
df null model = 153 with the objective function = 14.56 with Chi Square = 424.67
df of the model are 135 and the objective function was 7.39
The root mean square of the residuals (RMSR) is 0.12
The df corrected root mean square of the residuals is 0.13
The harmonic n.obs is 37 with the empirical chi square 174.14 with prob < 0.013
The total n.obs was 37 with Likelihood Chi Square = 210.62 with prob < 3.4e-05
Tucker Lewis Index of factoring reliability = 0.673
RMSEA index = 0.12 and the 90 % confidence intervals are 0.091 0.156
BIC = -276.85
Fit based upon off diagonal values = 0.9
Measures of factor score adequacy
MR1
Correlation of (regression) scores with factors 0.97
Multiple R square of scores with factors 0.95
Minimum correlation of possible factor scores 0.89
Warning: lavaan->lav_model_vcov():
Could not compute standard errors! The information matrix could not be
inverted. This may be a symptom that the model is not identified.
Warning: lavaan->lav_test_yuan_bentler():
could not invert information [matrix needed for robust test statistic
Warning: lavaan->lav_object_post_check():
some estimated lv variances are negative
lavaan 0.6-19 ended normally after 105 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 90
Number of observations 37
Model Test User Model:
Standard Scaled
Test Statistic 113.178 NA
Degrees of freedom 81 81
P-value (Chi-square) 0.011 NA
Scaling correction factor NA
Model Test Baseline Model:
Test statistic 538.730 553.536
Degrees of freedom 153 153
P-value 0.000 0.000
Scaling correction factor 0.973
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.917 NA
Tucker-Lewis Index (TLI) 0.842 NA
Robust Comparative Fit Index (CFI) NA
Robust Tucker-Lewis Index (TLI) NA
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -938.692 -938.692
Loglikelihood unrestricted model (H1) -882.103 -882.103
Akaike (AIC) 2057.384 2057.384
Bayesian (BIC) 2202.366 2202.366
Sample-size adjusted Bayesian (SABIC) 1921.079 1921.079
Root Mean Square Error of Approximation:
RMSEA 0.104 NA
90 Percent confidence interval - lower 0.052 NA
90 Percent confidence interval - upper 0.146 NA
P-value H_0: RMSEA <= 0.050 0.045 NA
P-value H_0: RMSEA >= 0.080 0.804 NA
Robust RMSEA NA
90 Percent confidence interval - lower NA
90 Percent confidence interval - upper NA
P-value H_0: Robust RMSEA <= 0.050 NA
P-value H_0: Robust RMSEA >= 0.080 NA
Standardized Root Mean Square Residual:
SRMR 0.067 0.067
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.287 0.220
EEC2 1.357 NA 0.389 0.313
EEC3 1.100 NA 0.315 0.250
EEC4 1.150 NA 0.330 0.314
EEF =~
EEF1 1.000 0.552 0.424
EEF2 1.036 NA 0.572 0.434
EEF3 0.746 NA 0.412 0.296
WTA =~
WTA1 1.000 0.670 0.345
WTA2 0.757 NA 0.507 0.293
WTA3 1.077 NA 0.721 0.494
WTA4 0.787 NA 0.527 0.388
PA =~
PA1 1.000 0.878 0.529
PA2 1.514 NA 1.329 0.820
PA3 1.817 NA 1.595 0.938
PerceivedS =~
PSP 1.000 0.478 0.608
Environ =~
EO 1.000 0.575 0.454
TechScie =~
TO 1.000 1.079 0.726
Atti =~
ADT 1.000 0.646 0.561
CMF =~
EEC1 1.000 NA NA
EEC2 1.070 NA NA NA
EEC3 0.465 NA NA NA
EEC4 0.875 NA NA NA
EEF1 0.800 NA NA NA
EEF2 0.687 NA NA NA
EEF3 0.913 NA NA NA
WTA1 1.084 NA NA NA
WTA2 1.118 NA NA NA
WTA3 0.364 NA NA NA
WTA4 1.042 NA NA NA
PA1 -0.428 NA NA NA
PA2 -0.455 NA NA NA
PA3 -0.181 NA NA NA
PSP -0.253 NA NA NA
EO 0.694 NA NA NA
TO 0.317 NA NA NA
ADT 0.407 NA NA NA
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC ~~
EEF 0.089 NA 0.560 0.560
WTA 0.098 NA 0.511 0.511
PA -0.079 NA -0.312 -0.312
PerceivedS -0.262 NA -1.911 -1.911
Environ 0.003 NA 0.021 0.021
TechScie -0.038 NA -0.124 -0.124
Atti 0.134 NA 0.721 0.721
CMF 0.534 NA 2.725 2.725
EEF ~~
WTA 0.133 NA 0.359 0.359
PA -0.121 NA -0.249 -0.249
PerceivedS -0.330 NA -1.250 -1.250
Environ -0.035 NA -0.112 -0.112
TechScie 0.013 NA 0.021 0.021
Atti 0.097 NA 0.272 0.272
CMF 0.768 NA 2.032 2.032
WTA ~~
PA -0.264 NA -0.450 -0.450
PerceivedS -0.219 NA -0.686 -0.686
Environ -0.028 NA -0.074 -0.074
TechScie 0.140 NA 0.194 0.194
Atti -0.052 NA -0.121 -0.121
CMF 0.877 NA 1.914 1.914
PA ~~
PerceivedS 0.281 NA 0.671 0.671
Environ -0.086 NA -0.171 -0.171
TechScie -0.345 NA -0.364 -0.364
Atti -0.328 NA -0.579 -0.579
CMF -0.047 NA -0.078 -0.078
PerceivedS ~~
Environ -0.004 NA -0.013 -0.013
TechScie -0.188 NA -0.364 -0.364
Atti -0.268 NA -0.870 -0.870
CMF 0.134 NA 0.412 0.412
Environ ~~
TechScie -0.054 NA -0.086 -0.086
Atti 0.153 NA 0.413 0.413
CMF 0.695 NA 1.767 1.767
TechScie ~~
Atti 0.520 NA 0.746 0.746
CMF 0.033 NA 0.045 0.045
Atti ~~
CMF 0.281 NA 0.636 0.636
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 1.012 NA 1.012 0.597
.EEC2 0.379 NA 0.379 0.245
.EEC3 1.049 NA 1.049 0.658
.EEC4 0.276 NA 0.276 0.251
.EEF1 0.460 NA 0.460 0.272
.EEF2 0.538 NA 0.538 0.310
.EEF3 1.113 NA 1.113 0.574
.WTA1 1.957 NA 1.957 0.521
.WTA2 1.841 NA 1.841 0.614
.WTA3 0.984 NA 0.984 0.462
.WTA4 0.640 NA 0.640 0.346
.PA1 2.023 NA 2.023 0.736
.PA2 0.895 NA 0.895 0.340
.PA3 0.335 NA 0.335 0.116
.PSP 0.486 NA 0.486 0.789
.EO 0.530 NA 0.530 0.332
.TO 1.068 NA 1.068 0.484
.ADT 0.755 NA 0.755 0.571
EEC 0.082 NA 1.000 1.000
EEF 0.305 NA 1.000 1.000
WTA 0.449 NA 1.000 1.000
PA 0.770 NA 1.000 1.000
PerceivedS 0.228 NA 1.000 1.000
Environ 0.330 NA 1.000 1.000
TechScie 1.165 NA 1.000 1.000
Atti 0.417 NA 1.000 1.000
CMF -0.468 NA NA NA