Table of contents
第一题 编写代码
利用nycflights13包的flights数据集是2013年从纽约三大机场(JFK、LGA、EWR)起飞的所有航班的准点数据,共336776条记录。
计算纽约三大机场2013起飞航班数和平均延误时间(可使用group_by, summarise函数)
flights %>% group_by (origin) %>% summarise (n= n (),delay_mean= mean (dep_delay,na.rm= T));airports
# A tibble: 3 × 3
origin n delay_mean
<chr> <int> <dbl>
1 EWR 120835 15.1
2 JFK 111279 12.1
3 LGA 104662 10.3
# A tibble: 1,458 × 8
faa name lat lon alt tz dst tzone
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
1 04G Lansdowne Airport 41.1 -80.6 1044 -5 A America/…
2 06A Moton Field Municipal Airport 32.5 -85.7 264 -6 A America/…
3 06C Schaumburg Regional 42.0 -88.1 801 -6 A America/…
4 06N Randall Airport 41.4 -74.4 523 -5 A America/…
5 09J Jekyll Island Airport 31.1 -81.4 11 -5 A America/…
6 0A9 Elizabethton Municipal Airport 36.4 -82.2 1593 -5 A America/…
7 0G6 Williams County Airport 41.5 -84.5 730 -5 A America/…
8 0G7 Finger Lakes Regional Airport 42.9 -76.8 492 -5 A America/…
9 0P2 Shoestring Aviation Airfield 39.8 -76.6 1000 -5 U America/…
10 0S9 Jefferson County Intl 48.1 -123. 108 -8 A America/…
# ℹ 1,448 more rows
计算不同航空公司2013从纽约起飞航班数和平均延误时间
carrier <- flights %>% group_by (carrier) %>% summarise (n= n (),delay= mean (dep_delay,na.rm= T)) %>% arrange (desc (n));carrier
# A tibble: 16 × 3
carrier n delay
<chr> <int> <dbl>
1 UA 58665 12.1
2 B6 54635 13.0
3 EV 54173 20.0
4 DL 48110 9.26
5 AA 32729 8.59
6 MQ 26397 10.6
7 US 20536 3.78
8 9E 18460 16.7
9 WN 12275 17.7
10 VX 5162 12.9
11 FL 3260 18.7
12 AS 714 5.80
13 F9 685 20.2
14 YV 601 19.0
15 HA 342 4.90
16 OO 32 12.6
计算纽约三大机场排名前三个目的地和平均飞行距离(可使用group_by, summarise, arrange, slice_max函数)
top3 <- flights %>% group_by (origin,dest) %>% summarise (n= n (),distance_mean= mean (distance,na.rm= T)) %>% slice_max (n,n= 3 ) %>% arrange (origin,desc (n));top3
`summarise()` has grouped output by 'origin'. You can override using the
`.groups` argument.
# A tibble: 9 × 4
# Groups: origin [3]
origin dest n distance_mean
<chr> <chr> <int> <dbl>
1 EWR ORD 6100 719
2 EWR BOS 5327 200
3 EWR SFO 5127 2565
4 JFK LAX 11262 2475
5 JFK SFO 8204 2586
6 JFK BOS 5898 187
7 LGA ATL 10263 762
8 LGA ORD 8857 733
9 LGA CLT 6168 544
第二题 解释代码
代码含义:将iris数据集转换为tibble格式,并按照Species列升序排序,然后在每个Species组内,按Sepal.Length和Sepal.Width列降序排序。最终返回排序后的数据框。
tibble (iris) %>%
arrange (Species,across (starts_with ("Sepal" ), desc))
# A tibble: 150 × 5
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
<dbl> <dbl> <dbl> <dbl> <fct>
1 5.8 4 1.2 0.2 setosa
2 5.7 4.4 1.5 0.4 setosa
3 5.7 3.8 1.7 0.3 setosa
4 5.5 4.2 1.4 0.2 setosa
5 5.5 3.5 1.3 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 5.4 3.9 1.3 0.4 setosa
8 5.4 3.7 1.5 0.2 setosa
9 5.4 3.4 1.7 0.2 setosa
10 5.4 3.4 1.5 0.4 setosa
# ℹ 140 more rows
代码含义:按gender列对starwars数据集进行分组。在每个性别组内,筛选出mass大于该组均值的元素并返回筛选后的结果。最终输出的数据框只包含那些体重超过其性别组平均体重的角色。
starwars %>%
group_by (gender) %>%
filter (mass > mean (mass, na.rm = TRUE ))
# A tibble: 15 × 14
# Groups: gender [3]
name height mass hair_color skin_color eye_color birth_year sex gender
<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
1 Darth … 202 136 none white yellow 41.9 male mascu…
2 Owen L… 178 120 brown, gr… light blue 52 male mascu…
3 Beru W… 165 75 brown light blue 47 fema… femin…
4 Chewba… 228 112 brown unknown blue 200 male mascu…
5 Jabba … 175 1358 <NA> green-tan… orange 600 herm… mascu…
6 Jek To… 180 110 brown fair blue NA <NA> <NA>
7 IG-88 200 140 none metal red 15 none mascu…
8 Bossk 190 113 none green red 53 male mascu…
9 Ayla S… 178 55 none blue hazel 48 fema… femin…
10 Gregar… 185 85 black dark brown NA <NA> <NA>
11 Lumina… 170 56.2 black yellow blue 58 fema… femin…
12 Zam We… 168 55 blonde fair, gre… yellow NA fema… femin…
13 Shaak … 178 57 none red, blue… black NA fema… femin…
14 Grievo… 216 159 none brown, wh… green, y… NA male mascu…
15 Tarfful 234 136 brown brown blue NA male mascu…
# ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
# vehicles <list>, starships <list>
代码含义:选择starwars数据集中的name、homeworld、species三个变量,并对除name变量外的其余变量的数据类型转换为因子。
starwars %>%
select (name, homeworld, species) %>%
mutate (across (! name, as.factor))
# A tibble: 87 × 3
name homeworld species
<chr> <fct> <fct>
1 Luke Skywalker Tatooine Human
2 C-3PO Tatooine Droid
3 R2-D2 Naboo Droid
4 Darth Vader Tatooine Human
5 Leia Organa Alderaan Human
6 Owen Lars Tatooine Human
7 Beru Whitesun Lars Tatooine Human
8 R5-D4 Tatooine Droid
9 Biggs Darklighter Tatooine Human
10 Obi-Wan Kenobi Stewjon Human
# ℹ 77 more rows
代码含义:将mtcars数据集转换为tibble格式,按vs变量对数据进行分组,再在每个vs组内将hp变量等距分为3个区间并将结果存储在hp_cut中,最后再按hp_cut对数据进行分组。
tibble (mtcars) %>%
group_by (vs) %>%
mutate (hp_cut = cut (hp, 3 )) %>%
group_by (hp_cut)
# A tibble: 32 × 12
# Groups: hp_cut [6]
mpg cyl disp hp drat wt qsec vs am gear carb hp_cut
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct>
1 21 6 160 110 3.9 2.62 16.5 0 1 4 4 (90.8,172]
2 21 6 160 110 3.9 2.88 17.0 0 1 4 4 (90.8,172]
3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1 (75.7,99.3]
4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1 (99.3,123]
5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2 (172,254]
6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1 (99.3,123]
7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4 (172,254]
8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2 (51.9,75.7]
9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2 (75.7,99.3]
10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4 (99.3,123]
# ℹ 22 more rows
第三题 查找帮助理解函数
阅读 https://dplyr.tidyverse.org/reference/mutate-joins.html 内容,说明4个数据集链接函数函数的作用。分别举一个实际例子演示并解释其输出结果。
inner_join()
:返回两个数据框中键值完全匹配的行。如果某一行在一个数据框中有键值,但在另一个数据框中没有匹配的键值,则该行会被丢弃。
# 创建两个数据框
df1 <- tibble (id = c (1 , 2 , 3 ), name = c ("A" , "B" , "C" ))
df2 <- tibble (id = c (2 , 3 , 4 ), age = c (25 , 30 , 35 ))
# 使用inner_join合并
result <- inner_join (df1, df2, by = "id" );result
# A tibble: 2 × 3
id name age
<dbl> <chr> <dbl>
1 2 B 25
2 3 C 30
left_join()
:返回左侧数据框的所有行,以及右侧数据框中与左侧数据框键匹配的行。如果右侧数据框中没有匹配的键值,则用NA填充。
#继续使用df1、df2数据框
result <- left_join (df1, df2, by = "id" );result
# A tibble: 3 × 3
id name age
<dbl> <chr> <dbl>
1 1 A NA
2 2 B 25
3 3 C 30
right_join()
:返回右侧数据框的所有行,以及左侧数据框中与右侧数据框键匹配的行。如果左侧数据框中没有匹配的键值,则用NA填充。
result <- right_join (df1, df2, by = "id" );result
# A tibble: 3 × 3
id name age
<dbl> <chr> <dbl>
1 2 B 25
2 3 C 30
3 4 <NA> 35
full_join()
:返回两个数据框的所有行。如果某一行在一个数据框中有键值,但在另一个数据框中没有匹配的键值,则用NA填充。
result <- full_join (df1, df2, by = "id" );result
# A tibble: 4 × 3
id name age
<dbl> <chr> <dbl>
1 1 A NA
2 2 B 25
3 3 C 30
4 4 <NA> 35