Simulación de Variables Aleatorias en R

Ejercicio 1: Simulación de fallas en un semestre

Se simula el número de fallas diarias con distribución de Poisson y se calculan la media y desviación estándar.

set.seed(123) # Para reproducibilidad

# Simular el número de fallas diarias con distribución de Poisson
fallas_diarias <- rpois(150, lambda = 3)

# Calcular estadísticos
media_fallas <- mean(fallas_diarias)
desviacion_fallas <- sd(fallas_diarias)

# Mostrar resultados
print("Simulación de fallas diarias:")
## [1] "Simulación de fallas diarias:"
print(fallas_diarias)  # Muestra todos los valores simulados
##   [1] 2 4 2 5 6 0 3 5 3 3 6 3 4 3 1 5 2 0 2 6 5 4 3 8 4 4 3 3 2 1 6 5 4 4 0 3 4
##  [38] 2 2 2 1 2 2 2 1 1 2 3 2 5 0 3 4 1 3 2 1 4 5 2 4 1 2 2 4 3 4 4 4 3 4 3 4 0
##  [75] 3 2 2 3 2 1 2 4 2 4 1 3 7 5 5 1 1 4 2 4 2 1 4 1 3 3 3 2 3 6 3 5 5 3 2 1 6
## [112] 2 1 6 4 1 3 6 3 2 4 2 2 2 2 7 1 1 1 4 3 5 4 4 3 4 5 4 7 3 2 2 0 1 5 2 2 1
## [149] 2 4
print(paste("Media de fallas diarias:", round(media_fallas, 2)))
## [1] "Media de fallas diarias: 3"
print(paste("Desviación estándar:", round(desviacion_fallas, 2)))
## [1] "Desviación estándar: 1.66"

Ejercicio 2: Vida útil de un componente electrónico

Se simula la vida útil de 1000 componentes con distribución exponencial y se estima la probabilidad de que duren más de 700 horas.

# Establecer semilla para reproducibilidad
set.seed(123)

# Parámetros
lambda <- 1/500  # Tasa para distribución exponencial (inversa del promedio)
n <- 1000        # Número de componentes a simular

# Simular la vida útil de 1000 componentes (en horas)
vida_util <- rexp(n, rate = lambda)

# Estimar la probabilidad de que un componente dure más de 700 horas
prob_simulada <- mean(vida_util > 700)

# Mostrar resultados
print("Simulación de la vida útil de los componentes:")
## [1] "Simulación de la vida útil de los componentes:"
print(vida_util)  # Muestra todos los valores simulados
##    [1]  421.7286305  288.3051354  664.5274339   15.7886796   28.1054880
##    [6]  158.2506082  157.1136461   72.6334020 1363.1182322   14.5767235
##   [11]  502.4150288  240.1073638  140.5068138  188.5589155   94.1420204
##   [16]  424.8930649  781.6017698  239.3802082  295.4674177 2020.5058557
##   [21]  421.5748656  482.9356055  742.6378970  674.0222429  584.2644921
##   [26]  802.9261715  748.3714344  785.3262734   15.8838720  298.9248456
##   [31] 1083.9198727  253.3078643  129.7789087 1298.4460582  614.5128659
##   [36]  395.3408794  314.6400389  627.3205015  294.3423211  564.6450169
##   [41]  210.1824014 3605.5037880  422.8609826  112.7710033  550.1694088
##   [46] 1124.1528462  681.8671496  288.1958340 1362.6379249  656.0815213
##   [51]   45.2956751  153.1019250  533.6065348  156.7581280  487.3200753
##   [56]  943.9116576  282.2943013 1288.4806645  523.8478740  512.2206709
##   [61]  513.9348078  142.3342303  781.5259443   21.0441465   49.3154449
##   [66]   49.2846561  140.1925807  147.8934793  486.2148245  462.0136120
##   [71]  821.2022634  809.9563838 1268.0727699  760.7748117  190.0071015
##   [76]  119.2564834  233.2437118   21.1357258  159.8384497  321.8054601
##   [81]  286.2815517  108.0277513 2249.3366989  928.5452766  342.7293189
##   [86]  719.7263131  865.5769918  622.3916500  731.6502800  768.6969893
##   [91]    2.2995633  554.3827340  149.9851588  596.0015035  557.4643519
##   [96]   33.6879455  240.3343604  785.2271695  129.9730535  928.4611437
##  [101]  231.6098104  118.0178733  591.0497107   29.8356859  201.6192207
##  [106]  471.4699201  208.2903222  376.6092025   94.3431940  438.4269356
##  [111]   95.0189103  489.5391031  161.6879136  660.2387768  159.2303242
##  [116]  802.5336479   72.8670582  901.5646593   15.0297272  651.7202747
##  [121]   99.8961224  875.7281210  881.8341661  421.5217891  174.3763881
##  [126] 1648.9123999  200.8530875  550.3508672  664.4615861  320.9513240
##  [131]   97.9168577  228.3944283  186.3750820 1731.7974455  637.0138596
##  [136]  540.7425753  148.4795804   42.0803672 1476.7004586  984.1261273
##  [141]  331.9275628  804.6960719  303.4185420   46.8261566  162.3176420
##  [146]  879.9411561  133.0553598  470.3130838  224.5543464  644.4532396
##  [151]   89.1445313  785.8630438   31.0703989  285.2916713  865.3904227
##  [156]  655.3719523  647.4364831  233.6553545   16.4448943   76.5190213
##  [161]  519.2360021  541.2228531 1873.6455691    2.8130456    2.1836853
##  [166]  849.9920805  270.3340743  235.1843058   25.7797078  258.5931695
##  [171]  741.5715046  639.7427795  713.2340870 1059.1471707  712.0801870
##  [176]  442.0571555 1345.4934293 1114.9535486  261.4022301   34.3252824
##  [181]  284.5752665 2182.9554679  279.0658828  229.3906519  130.1318528
##  [186]  349.4208725  481.5941943  365.7397774  556.1397853  302.8122729
##  [191]  335.7088370  815.8294151   50.9630658  203.9920613 1370.1742766
##  [196] 1425.9387291   12.0866861  237.7974030  334.0543092  475.1151511
##  [201]  568.8875013   41.3825433  821.4538524   79.4502074  739.3079688
##  [206]   56.5158695  112.0628352  335.2553200  768.4153551  964.4109681
##  [211]  106.7861002  283.9464787  966.6619002 1801.3739315  659.7893229
##  [216]  465.3820675  157.7284312   72.3910260  464.1472557  129.1712330
##  [221]  269.1939112   37.6771830   64.2188531 1299.4200764 1035.0954970
##  [226]  102.6905087 1383.0627398  728.1713857 1381.4611489  741.4170662
##  [231]  137.0521309  375.1668631  525.1987506  180.7875512  480.4720864
##  [236]  331.5685980  788.8187067  961.2404555  111.5015747 1922.6029448
##  [241]   96.2635446  490.4483417  104.9788440  622.9829178  835.0475505
##  [246]  195.3443616  505.6684171   37.4918213 1335.2873576  837.8102313
##  [251]  412.5593318   83.8723360  231.7076589  855.2308250  245.5730827
##  [256]  781.4836148  562.6875171  173.3324814   23.8226017  546.1771758
##  [261]  713.3149203  259.0694156  812.7940837 1097.0087203   84.9365573
##  [266]  388.1296292  791.1763522  310.3980662 1291.0536276  322.0300712
##  [271]  576.1389134  346.7348680  767.7182029  313.9337213  462.1013389
##  [276]  187.7426857   40.1261741  178.2238574  635.7549329 1103.6325925
##  [281]  376.7047564   17.1687135  286.9273527  553.7857422  579.4564802
##  [286]  420.7738517 1179.5040694  577.4821294  905.2024390   36.0537206
##  [291]    3.9487120  118.2929428 1199.9702239  137.1255285  880.1208045
##  [296]  368.2864251  315.0814951  448.8586392  575.9156463  470.7991741
##  [301] 1484.2137992   18.8049234  179.0134157    8.8468795  452.3488395
##  [306]  154.9312163  316.4781388 1518.2815268  239.0316855  544.0125777
##  [311]  329.2508235   35.5413917  395.6643175  300.9482119 1272.8783292
##  [316]  332.1077742  400.2837352  253.1100996   28.2341582  302.2382171
##  [321]  616.9207995  501.7683883 1012.9019925   69.3826627  183.5849145
##  [326]  165.7351425   29.8924586    9.8428994 1750.0033405 1649.6541201
##  [331]   69.6892311  150.2615004  153.7666824  637.0811132  312.3048285
##  [336]   47.0234177  191.7640152   87.4613670  592.3074021  673.1844065
##  [341] 1820.5186305   66.7340828  628.2868647  582.3654858   52.4498134
##  [346]  166.7051578   21.0655139   30.6243865    8.3706297  521.5635849
##  [351]   11.0805219  186.4903511  753.4453766  301.4295837  778.2754125
##  [356]  322.7173917  508.5692475  594.9123660  129.7454238 1312.7907151
##  [361] 1936.6668415  202.3777822  254.8654536   15.3002078  275.4075914
##  [366]  600.2064240 1560.0231401  575.3957536  394.0761299  105.5239610
##  [371]  259.1353394  344.8346243  382.6444968  953.7835313  318.9553833
##  [376]  682.1277938   93.8384931  298.8235578   31.3032490  125.7436371
##  [381]  245.6362173 1222.7484295  447.6088127  114.5621573  252.9320579
##  [386]  164.8825608  236.6203461   19.5405903    2.9083041  547.6631364
##  [391]  345.5561229  306.4351638 1121.2587436 1139.3747804   54.4702174
##  [396]  887.2181652 1875.2362457   21.3138463 1229.9439171  412.5782824
##  [401]  687.4433923   87.2781242  306.6944296 1001.1280160  501.8881582
##  [406]  214.7548106  331.2219789  190.8292142   22.3357661  875.9402018
##  [411]  360.3605085  134.8005098   39.5609140  753.5613803  413.9971440
##  [416]   83.0305952  853.2507494 1310.1296564  469.8711534  366.8385376
##  [421] 1973.4917012  115.9593510   46.4262587  599.4625767  936.6392409
##  [426]  527.0837939  159.6213372  229.3609313  347.8504463   37.3907434
##  [431]  210.6709817  212.3732430 1964.2178220  680.4026896  224.3533793
##  [436]  882.0475647  478.1991686  304.2562793    0.4129869  786.5567477
##  [441] 1676.1231161   97.3534826  489.2304772   27.9290003  295.4220204
##  [446] 1091.1815455  195.0206973   86.4377357  830.8891011 1112.7612190
##  [451]   57.4375831  359.2943520 1008.1224348   13.7811392  860.2850364
##  [456]   69.3526887  769.7564410  775.9822309  671.1398163  183.0102825
##  [461]  153.4278204  234.2456244  307.4991093  705.4048590  348.1306582
##  [466]  509.6675735  661.1121702  135.3675770  308.6120449  364.1759930
##  [471]  319.4671399 2239.3398271 1006.8155871 1833.4509012  412.8389847
##  [476]  188.0271292  862.7699318  661.8349058 1369.4133059  407.7039398
##  [481]  569.5060314  365.0632724  388.6032815 1638.1932496  372.1661987
##  [486]  165.6004964  167.6402313 1676.9439093  195.1052444  573.0967237
##  [491]   48.2443058  436.5921328  697.4783223   89.9016238   61.6756089
##  [496]  188.7211201  469.1152083  105.5868415   26.2900780 1503.9753347
##  [501] 2451.7035120  271.9094823  577.5668696   72.0737206  203.8129501
##  [506]  157.2210605  425.2778804 1317.6364162  212.3537724 1130.7851574
##  [511]    3.1815268  713.3255619  499.0398837  226.3988883  151.1226072
##  [516]   26.0433337   14.6810925  147.4421436  440.4310670  822.3283272
##  [521] 1215.6702434  755.7319384  872.2233809  261.9853232   27.3949406
##  [526]    4.5196765  193.1989014   37.1854938   51.4986565  245.3418423
##  [531]  103.1829561  365.4269306  889.1880372  169.6035459   46.5227943
##  [536]  311.4636578  259.1668020 1875.0588697  608.3809905 1700.3761790
##  [541]  297.9029373  188.0502653   83.5628633  168.3236435   11.3145965
##  [546]  262.7505893   24.7563926 2790.6793839  184.1724414  614.4469334
##  [551]  485.6800493  308.3862553 1557.0063367  574.0589797  237.2249344
##  [556]  542.6036957   54.6818294  742.1216508  284.9315563   70.7342430
##  [561]   96.3629608   54.9972077    8.2098581  134.8761561 1283.1273348
##  [566]  840.3840214  657.4065806  530.2024786  677.0884967  454.6785285
##  [571]   60.2805375  816.6437828   15.2376712   21.2320042  666.4654473
##  [576]  502.3930455  123.2613835  753.0589047  190.0195670 1205.5109875
##  [581]  281.9689147 1622.7191388  319.8446678  385.3904852  412.2744193
##  [586]  143.2215595    2.4254795  684.6650401  593.2274427  127.1107006
##  [591]   47.7780687  806.1666926  958.3959281  376.8014969   72.1486795
##  [596]  646.9119470   65.4653807  329.6238787  142.1138195  629.5710937
##  [601]  209.5798547 1134.5511842  833.8864343  165.6229484  273.6921224
##  [606]  437.3737513 1064.7456655  464.7324390  933.7084554    6.9977269
##  [611] 1846.9809321  273.6860395   59.6650792  141.4626392  443.3451888
##  [616]  292.7383417   85.5655763  636.0915620  311.2373496  483.6997781
##  [621]   81.4473382  439.7337670  848.2631713  714.2997281  121.7259828
##  [626]   47.9942833  790.1240354   59.5458692  501.7450180  219.5872827
##  [631]  430.6028102 1146.6074483  629.1637728 2418.3673652  245.6705569
##  [636]  326.7154903  186.9455143  399.4533578  159.1979258  793.0526341
##  [641]  885.3193353  459.1961079  586.3881437 1161.4932054  213.1501888
##  [646]   50.9227291  736.6087660  194.7615896  221.8585593  128.9277608
##  [651]  389.3915997 1856.0522215  631.2360982  880.8945100  485.8578290
##  [656]  673.6837188  259.3356967  390.3540005 1049.8880668  373.9548730
##  [661] 1084.5730389  257.0985334   69.2841414  300.9178487  227.7627103
##  [666]  951.0805914   29.4057564   98.6385469  228.9230512 1118.0134182
##  [671]  326.3315787  450.2416446  784.8107370   68.5687540 1001.8854513
##  [676]  964.3696881  218.6117452  473.6093813  746.7076899 1583.2653065
##  [681] 1226.9592958  319.6825185  202.9795039   67.7483736  221.3092663
##  [686]  252.4442135  609.4187838  422.5941528   31.6833272  365.8657330
##  [691]  331.7903178  657.3013598 1120.7761755   75.2701634  125.6683154
##  [696]  128.4048038  503.0509187  748.7851483  207.6377718  128.9180095
##  [701] 1066.1873398   72.7797811  598.2604637 1022.6091798  387.7085214
##  [706] 1119.4739686  190.9898499  420.4888288  790.7971628  139.2580701
##  [711]   75.0893754  220.0504579  641.0656008 1291.7319116  134.8964050
##  [716] 2907.1641488 1035.2401398  179.0228095   46.7861865  621.5701056
##  [721]  288.4719290  192.9136666   94.2729714 1195.4748890 2067.9950443
##  [726]  973.8329080   38.0543325  616.9707761  169.5061966  218.0918090
##  [731]  369.0146217  285.3486184   42.1882898  679.6682807   27.3693245
##  [736]  610.9319106  302.1827079  984.8417276  119.8009505 1346.7762559
##  [741] 1532.3865711  424.9213001 2519.6984344  401.6937506  496.9798764
##  [746]   88.7062766  708.0904914  468.9116264 1167.6642121  490.0617730
##  [751]  124.9055369  443.3659813   70.7131934 1560.3425539  956.0170024
##  [756]  227.0864707  326.6900503   10.7210753   67.7261658 3210.9420214
##  [761]  768.2595932   28.6134832   86.2019891 1394.4114930  778.8413576
##  [766]  203.0729740 1064.2064390  121.8070623   30.4619522 2065.2106878
##  [771]  225.2279520  542.7974591   54.5631796  237.6522073  123.1291620
##  [776]  468.6304019  630.9665595 1001.4970023  210.3113041   62.5168087
##  [781]  398.3716159  235.5584037   49.2797939  538.8276782   14.9656348
##  [786]  315.7679476   26.2725693 1005.3073801  105.1244935  270.5970469
##  [791]  233.4485550  338.9059983   69.0488424 2073.8547769  534.6525042
##  [796]   55.1138069 1127.0359502  739.1563775  184.6086963 1336.6962605
##  [801] 1008.2908012  578.5338669  346.1957576  730.4415594  279.0688686
##  [806]  356.7849570   48.0433260 1428.7186935  306.1094761  522.0792047
##  [811]  123.7636534  615.3306355  350.8207194   12.5749717  487.2778267
##  [816]   81.4331577  117.3444083  405.6189796  247.7865487  343.9147081
##  [821]   34.7590470  451.0441134  432.8866529  154.6267448  100.8816656
##  [826]   36.3599309   97.4518666 2029.6125737 2545.7577937  718.6601981
##  [831] 2027.0152715 1276.7563862  414.7296301  748.1541174  336.9779109
##  [836]  427.4969727  830.8325279   85.5671042  788.2590890  909.3854194
##  [841]  525.0166002  928.7549359  657.6566347  113.5596184  185.6713344
##  [846]  323.5256001  594.5378179    6.5267290  469.5135084 1146.1436385
##  [851]   65.2327174   21.0848636  130.7656612  576.3404351  365.0319044
##  [856]  714.5398769  431.1808987   29.8650061  222.3988681   55.7867383
##  [861]  924.9099493  230.1835620   89.5256505  471.5383155  272.7943989
##  [866]  519.1699946  144.0784919   34.4308142  667.2487294  450.6684139
##  [871]  297.9726312  300.5107120  620.4249826  609.7529805  145.5156142
##  [876]  178.9449811  788.2735142  112.7659029 1557.7634647  368.4402147
##  [881]    0.6716992  387.0597910   98.8021491  235.8376263  213.5778118
##  [886] 1239.0423884  944.3630665 1298.8762275  310.8894788  952.8180742
##  [891] 2063.8688308   47.6982259  507.0238196 1064.3199803  233.0399933
##  [896]  638.4367710  509.4640951   38.8531494  313.8505241   16.7445383
##  [901]   82.1438972  330.7340622 2083.4346805  265.6896671  475.8988116
##  [906]  312.0117444   69.5779729  158.1483086  886.0612507   84.7100895
##  [911]  494.2746084  639.2308484  838.7021744 1898.1751156  607.4695294
##  [916]  691.2704455  958.8514342  205.3292817 2229.4122859  231.2400930
##  [921] 2095.1459377  143.8400021  933.9351828  142.4433756  346.6035691
##  [926]  594.1076684  858.2356926 1648.9344089  273.5310560  508.8082491
##  [931]   52.8764706  176.3305289  401.2423320 1731.9852150  558.0245431
##  [936]   30.6664107  627.2374484  483.5725720  182.5750542  415.8034054
##  [941]  626.7630188  108.2713750  751.0153688 1072.1998728    9.4558073
##  [946]  287.3849634  563.8941899 2036.1628559  246.0935980 1821.8080343
##  [951]  375.5668575  312.3929838  127.5024416  130.5724860  628.3532907
##  [956]  467.4009281  205.4707500  502.2177780 1145.2357144   91.3872421
##  [961]  906.4942346  241.3501241  434.3260065  139.1858107 1055.6058434
##  [966]   44.3645699  539.7159626  687.8336475  633.1429523  108.8471375
##  [971]  537.5410504  348.6780711 1996.9283742 1548.8526261   64.7705361
##  [976]  109.0609785  174.7052633  692.6301378  154.3812877   61.8254492
##  [981]  361.5784398 1077.6839182  329.0716948  271.0462969  161.8351697
##  [986]  285.1829424   34.5530961  400.4964311  222.2220511  559.1839491
##  [991]  611.9973571 1397.7927751   21.4452869 1065.5912067   12.8849721
##  [996]  142.0699491  285.0783595  646.6990141  135.3428686  419.4169924
print(paste("Probabilidad estimada (simulación):", round(prob_simulada, 4)))
## [1] "Probabilidad estimada (simulación): 0.255"
# Valor teórico para comparar
prob_teorica <- exp(-lambda * 700)
print(paste("Probabilidad teórica:", round(prob_teorica, 4)))
## [1] "Probabilidad teórica: 0.2466"

Ejercicio 3: Simulación de productos defectuosos

Se simula el número de productos defectuosos en lotes de 50 unidades y se calcula el promedio.

set.seed(123)

# Simular el número de productos defectuosos por lote
defectuosos_por_lote <- rbinom(100, size = 50, prob = 0.05)

# Calcular el promedio de productos defectuosos por lote
promedio_defectuosos <- mean(defectuosos_por_lote)

# Mostrar resultados
print("Simulación de productos defectuosos por lote:")
## [1] "Simulación de productos defectuosos por lote:"
print(defectuosos_por_lote)  # Muestra todos los valores simulados
##   [1] 2 4 2 4 5 0 2 4 3 2 5 2 3 3 1 5 1 0 2 5 4 3 3 7 3 3 3 3 2 1 6 5 3 4 0 2 3
##  [38] 1 2 1 1 2 2 2 1 1 1 2 1 4 0 2 4 1 3 1 1 3 4 2 3 1 2 1 4 2 4 4 4 2 3 3 3 0
##  [75] 2 1 2 3 2 1 1 3 2 4 1 2 6 4 4 1 1 3 2 3 2 1 4 1 2 2
print(paste("Promedio de productos defectuosos por lote:", round(promedio_defectuosos, 2)))
## [1] "Promedio de productos defectuosos por lote: 2.48"

Ejercicio 4: Demanda diaria de energía

Se simula la demanda diaria de energía durante un año con una distribución normal y se estima la probabilidad de que supere los 130 MW. También se muestra un histograma de la distribución.

set.seed(123)

# Simular la demanda diaria de energía (en MW) durante un año
demanda_diaria <- rnorm(365, mean = 100, sd = 15)

# Estimar la probabilidad de que la demanda supere los 130 MW
prob_superar_130 <- mean(demanda_diaria > 130)

# Mostrar la simulación completa
print("Simulación de demanda diaria de energía (MW):")
## [1] "Simulación de demanda diaria de energía (MW):"
print(demanda_diaria)  # Muestra todos los valores simulados
##   [1]  91.59287  96.54734 123.38062 101.05763 101.93932 125.72597 106.91374
##   [8]  81.02408  89.69721  93.31507 118.36123 105.39721 106.01157 101.66024
##  [15]  91.66238 126.80370 107.46776  70.50074 110.52034  92.90813  83.98264
##  [22]  96.73038  84.60993  89.06663  90.62441  74.69960 112.56681 102.30060
##  [29]  82.92795 118.80722 106.39696  95.57393 113.42688 113.17200 112.32372
##  [36] 110.32960 108.30876  99.07132  95.41056  94.29293  89.57940  96.88124
##  [43]  81.01905 132.53434 118.11943  83.15337  93.95673  93.00017 111.69948
##  [50]  98.74946 103.79978  99.57180  99.35694 120.52903  96.61344 122.74706
##  [57]  76.76871 108.76921 101.85781 103.23912 105.69459  92.46515  95.00189
##  [64]  84.72137  83.92313 104.55293 106.72315 100.79506 113.83401 130.75127
##  [71]  92.63453  65.36247 115.08608  89.36199  89.67987 115.38357  95.72840
##  [78]  81.68923 102.71955  97.91663 100.08646 105.77921  94.44010 109.66565
##  [85]  96.69270 104.97673 116.45259 106.52772  95.11103 117.23211 114.90256
##  [92] 108.22595 103.58098  90.58141 120.40979  90.99611 132.80999 122.98916
##  [99]  96.46449  84.60369  89.34390 103.85326  96.29962  94.78686  85.72572
## [106]  99.32458  88.22643  74.98087  94.29660 113.78495  91.36980 109.11946
## [113]  75.73176  99.16657 107.79111 104.51730 101.58514  90.38941  87.25443
## [120]  84.63807 101.76470  85.78788  92.64164  96.15862 127.65793  90.22075
## [127] 103.53080 101.16941  85.57215  98.93038 121.66826 106.77256 100.61849
## [134]  93.66255  69.20129 116.97006  78.09040 111.09921 128.63655  78.34160
## [141] 110.52677  96.06704  76.41784  77.27999  75.97696  92.03640  78.07367
## [148] 110.31875 131.50163  80.69454 111.81608 111.53563 104.98304  84.87435
## [155]  98.20821  95.79407 108.44484  94.41342 114.65460  94.38129 115.79067
## [162]  84.26234  81.09767 148.61560  93.74714 104.47341 109.54855  92.74329
## [169] 107.75293 105.53447  96.76929 100.97940  99.48899 131.92678  88.87996
## [176]  83.56006 100.56683 104.65721 106.54785  93.12452  84.05011 118.94778
## [183]  94.75524  87.01731  96.45581  97.04236 116.64880 101.27106 111.31081
## [190]  92.51062 103.21668  95.12971 101.41875  86.56955  80.33798 129.95820
## [197] 109.01063  81.23093  90.83251  82.21780 132.98216 119.68619  96.02282
## [204] 108.14791  93.78490  92.85630  88.17096  91.08074 124.76361  99.18958
## [211] 101.78868 103.65531 118.48714  92.25904  85.11239 125.13545  93.38255
## [218]  89.15401  81.45590  80.72926  91.39040 109.26979 116.64772 110.61383
## [225]  94.54514 100.89625  89.43105  89.24173 113.26976  84.76611 129.32941
## [232]  98.64521 103.21808  88.92208  91.38417  80.24476  97.25612 106.28474
## [239] 104.86457  88.27695  88.17067  92.46702 122.44091  82.94045  97.31423
## [246] 128.53543  98.48538  79.60239  90.02846 107.28190  94.36596  91.57185
## [253]  94.84124 101.35745 123.97763  98.67152 116.21199 109.46131  98.29540
## [260]  77.00647  92.18324  92.65194 100.70732 119.50298 134.39618 123.21372
## [267]  98.00274  73.65209  94.16830 101.33811 112.67520 114.43792 110.26464
## [274]  79.07088 112.74465  93.30164 102.62204 101.11827 106.42250 100.37012
## [281]  74.98787 111.04744 105.79040  96.01523 101.77217 102.01058 103.31529
## [288] 124.61269  96.71424 102.52098 117.52576 115.81272 117.17895  91.33798
## [295] 130.03724 101.00051 128.00278  79.73646 100.31475 118.74872  89.27137
## [302]  88.70967  85.92192  84.21230  93.44261 104.96769  69.78684 103.17971
## [309] 118.55013 130.56361 119.51764 111.35162  74.09904  90.97740  94.71930
## [316] 110.55286  98.41493  81.12027 125.26654 113.67087 103.56145 118.27163
## [323]  79.91839 109.91230  92.15631 110.25618  99.08767 109.49441 120.03276
## [330] 100.10935 115.26338  82.17349  89.17593 122.78827 105.66082  69.21666
## [337]  79.53944  96.98828 112.98669  98.47175 109.36281 114.38508 125.06582
## [344] 100.84025  99.22027  73.70144 101.48991  91.42225  85.38986  97.30141
## [351] 115.22415  70.10877  93.59081 101.74956  86.60189 105.00854 106.17145
## [358]  99.50446  63.01153 138.57187  96.92051 109.76790 104.10650 115.37010
## [365] 112.26489
# Mostrar resultado de la probabilidad estimada
print(paste("Probabilidad de superar 130 MW:", round(prob_superar_130, 4)))
## [1] "Probabilidad de superar 130 MW: 0.0301"
# Histograma de la demanda diaria
hist(demanda_diaria, breaks = 30, main = "Histograma de demanda diaria de energía", 
     xlab = "Demanda (MW)", col = "lightblue", probability = TRUE)

# Agregar línea vertical en 130 MW
abline(v = 130, col = "red", lwd = 2, lty = 2)
legend("topright", legend = c("Umbral 130 MW"), col = "red", lwd = 2, lty = 2)

Ejercicio 5: Tiempo de vida de un capacitor

Se simula el tiempo de vida de capacitores aplicando la transformada inversa, se calculan estadísticas y se grafica la densidad teórica.

# a) Método de transformada inversa
set.seed(123)
u <- runif(1000)
tiempos_vida <- -1000 * log(1 - u)  # Transformada inversa de exponencial

# b) Estimación de media y varianza
media_simulada <- mean(tiempos_vida)
varianza_simulada <- var(tiempos_vida)

# Valores teóricos
media_teorica <- 1000
varianza_teorica <- 1000^2

# c) Probabilidad de durar menos de 940 horas
prob_menor_940 <- mean(tiempos_vida < 940)
prob_teorica <- 1 - exp(-940/1000)

# Mostrar resultados
cat("\nProblema 5 - Tiempo de vida de capacitores (Exponencial):\n")
## 
## Problema 5 - Tiempo de vida de capacitores (Exponencial):
cat("a) Se generaron 1000 tiempos de vida usando la transformada inversa\n")
## a) Se generaron 1000 tiempos de vida usando la transformada inversa
cat("b) Comparación de estadísticas:\n")
## b) Comparación de estadísticas:
cat("   Media simulada:", media_simulada, "vs. Media teórica:", media_teorica, "\n")
##    Media simulada: 986.1544 vs. Media teórica: 1000
cat("   Varianza simulada:", varianza_simulada, "vs. Varianza teórica:", varianza_teorica, "\n")
##    Varianza simulada: 954966.2 vs. Varianza teórica: 1e+06
cat("d) Probabilidad estimada de durar menos de 940 horas:", prob_menor_940, "\n")
## d) Probabilidad estimada de durar menos de 940 horas: 0.611
cat("   Valor teórico (1 - e^(-940/1000)):", prob_teorica, "\n")
##    Valor teórico (1 - e^(-940/1000)): 0.6093722
# Gráfica: Histograma con densidad teórica
hist(tiempos_vida, breaks = 30, main = "Histograma de tiempo de vida", 
     xlab = "Tiempo (horas)", col = "lightgreen", probability = TRUE)
curve(dexp(x, rate = 1/1000), add = TRUE, col = "red", lwd = 2)
legend("topright", legend = c("Densidad teórica"), col = c("red"), lwd = 2)