This report presents a regression analysis examining the relationship for country pairs.
# Load necessary libraries
library(readxl)
library(dplyr)
library(stats)
# Load the dataset
file_path <- "2017_2023.xlsx"
data <- read_excel(file_path, sheet = "Sheet1")
# Rename columns to ensure compatibility
colnames(data) <- make.names(colnames(data))
# Select relevant variables
data <- data %>% select(Country_Pair, Religion, Language, Disclosure, GDP, Tax,
Currency, R.D, High_Tech_Exports, Z.score)
# Convert necessary variables to numeric
data <- data %>% mutate(across(everything(), as.numeric))# Load necessary libraries
library(readxl)
library(dplyr)
library(stats)
# Load the dataset
file_path <- "2017_2023.xlsx"
data <- read_excel(file_path, sheet = "Sheet1")
# Rename columns to ensure compatibility
colnames(data) <- make.names(colnames(data))
# Select relevant variables
data <- data %>% select(Country_Pair, Religion, Language, Disclosure, GDP, Tax,
Currency, R.D, High_Tech_Exports, Z.score)
# Convert necessary variables to numeric
data <- data %>% mutate(across(everything(), as.numeric))
We run a linear regression model with Country_Pair as the dependent variable and the following independent variables:
# Run the regression model
model <- lm(Country_Pair ~ Z.score + Religion + Language + Disclosure +
Tax + Currency + GDP + R.D + High_Tech_Exports,
data = data, na.action = na.exclude)
# Display model summary
summary(model)
# Create a clean results table
results <- broom::tidy(model)
knitr::kable(results, digits = 4, caption = "Regression Coefficients")
par(mfrow = c(2, 2))
plot(model)par(mfrow = c(2, 2))
plot(model)