flights |>
group_by(origin) |>
summarise(n=n(),dly=mean(dep_delay,na.rm=T))# A tibble: 3 × 3
origin n dly
<chr> <int> <dbl>
1 EWR 120835 15.1
2 JFK 111279 12.1
3 LGA 104662 10.3
利用nycflights13包的flights数据集是2013年从纽约三大机场(JFK、LGA、EWR)起飞的所有航班的准点数据,共336776条记录。
计算纽约三大机场2013起飞航班数和平均延误时间(可使用group_by, summarise函数)
flights |>
group_by(origin) |>
summarise(n=n(),dly=mean(dep_delay,na.rm=T))# A tibble: 3 × 3
origin n dly
<chr> <int> <dbl>
1 EWR 120835 15.1
2 JFK 111279 12.1
3 LGA 104662 10.3
计算不同航空公司2013从纽约起飞航班数和平均延误时间
flights |>
group_by(carrier) |>
summarise(n=n(),dly=mean(dep_delay,na.rm=T)) |>
arrange(desc(n))# A tibble: 16 × 3
carrier n dly
<chr> <int> <dbl>
1 UA 58665 12.1
2 B6 54635 13.0
3 EV 54173 20.0
4 DL 48110 9.26
5 AA 32729 8.59
6 MQ 26397 10.6
7 US 20536 3.78
8 9E 18460 16.7
9 WN 12275 17.7
10 VX 5162 12.9
11 FL 3260 18.7
12 AS 714 5.80
13 F9 685 20.2
14 YV 601 19.0
15 HA 342 4.90
16 OO 32 12.6
计算纽约三大机场排名前三个目的地和平均飞行距离(可使用group_by, summarise, arrange, slice_max函数)
flights |>
group_by(origin,dest) |>
summarise(n=n(),dist=mean(distance)) |>
slice_max(n,n=3)`summarise()` has grouped output by 'origin'. You can override using the
`.groups` argument.
# A tibble: 9 × 4
# Groups: origin [3]
origin dest n dist
<chr> <chr> <int> <dbl>
1 EWR ORD 6100 719
2 EWR BOS 5327 200
3 EWR SFO 5127 2565
4 JFK LAX 11262 2475
5 JFK SFO 8204 2586
6 JFK BOS 5898 187
7 LGA ATL 10263 762
8 LGA ORD 8857 733
9 LGA CLT 6168 544
代码含义:tibble把鸢尾花数据(iris)变成更整洁的表格,arrange先按花的种类(Species)分组然后在每个种类里,把所有名字以”Sepal”开头的列(比如花瓣长度、宽度)从大到小排序(desc表示降序)。
tibble(iris) %>%
arrange(Species,across(starts_with("Sepal"), desc))# A tibble: 150 × 5
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
<dbl> <dbl> <dbl> <dbl> <fct>
1 5.8 4 1.2 0.2 setosa
2 5.7 4.4 1.5 0.4 setosa
3 5.7 3.8 1.7 0.3 setosa
4 5.5 4.2 1.4 0.2 setosa
5 5.5 3.5 1.3 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 5.4 3.9 1.3 0.4 setosa
8 5.4 3.7 1.5 0.2 setosa
9 5.4 3.4 1.7 0.2 setosa
10 5.4 3.4 1.5 0.4 setosa
# ℹ 140 more rows
代码含义:group_by把角色数据(starwars)按性别(gender)分组(如男性、女性、无性别等),filter在每个性别组里,只留下那些体重超过该性别平均体重的角色,(na.rm=TRUE的意思是计算平均值时忽略那些体重数据缺失的角色)。
starwars %>%
group_by(gender) %>%
filter(mass > mean(mass, na.rm = TRUE))# A tibble: 15 × 14
# Groups: gender [3]
name height mass hair_color skin_color eye_color birth_year sex gender
<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
1 Darth … 202 136 none white yellow 41.9 male mascu…
2 Owen L… 178 120 brown, gr… light blue 52 male mascu…
3 Beru W… 165 75 brown light blue 47 fema… femin…
4 Chewba… 228 112 brown unknown blue 200 male mascu…
5 Jabba … 175 1358 <NA> green-tan… orange 600 herm… mascu…
6 Jek To… 180 110 brown fair blue NA <NA> <NA>
7 IG-88 200 140 none metal red 15 none mascu…
8 Bossk 190 113 none green red 53 male mascu…
9 Ayla S… 178 55 none blue hazel 48 fema… femin…
10 Gregar… 185 85 black dark brown NA <NA> <NA>
11 Lumina… 170 56.2 black yellow blue 58 fema… femin…
12 Zam We… 168 55 blonde fair, gre… yellow NA fema… femin…
13 Shaak … 178 57 none red, blue… black NA fema… femin…
14 Grievo… 216 159 none brown, wh… green, y… NA male mascu…
15 Tarfful 234 136 brown brown blue NA male mascu…
# ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
# vehicles <list>, starships <list>
代码含义:select只保留角色数据(starwars)的名字(name)、家乡(homeworld)和物种(species)这三列,mutate across把除名字(name)外的所有列(也就是家乡和物种)都转换成分类格式。
starwars %>%
select(name, homeworld, species) %>%
mutate(across(!name, as.factor))# A tibble: 87 × 3
name homeworld species
<chr> <fct> <fct>
1 Luke Skywalker Tatooine Human
2 C-3PO Tatooine Droid
3 R2-D2 Naboo Droid
4 Darth Vader Tatooine Human
5 Leia Organa Alderaan Human
6 Owen Lars Tatooine Human
7 Beru Whitesun Lars Tatooine Human
8 R5-D4 Tatooine Droid
9 Biggs Darklighter Tatooine Human
10 Obi-Wan Kenobi Stewjon Human
# ℹ 77 more rows
代码含义:tibble把汽车数据(mtcars)变成更整洁的表格,group_by把汽车按发动机类型(vs)分组,mutate在每组里,把马力(hp)分成低、中、高三个档次(cut(hp,3)就是平均分三段),group_by改成按马力档次重新分组。
tibble(mtcars) %>%
group_by(vs) %>%
mutate(hp_cut = cut(hp, 3)) %>%
group_by(hp_cut)# A tibble: 32 × 12
# Groups: hp_cut [6]
mpg cyl disp hp drat wt qsec vs am gear carb hp_cut
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct>
1 21 6 160 110 3.9 2.62 16.5 0 1 4 4 (90.8,172]
2 21 6 160 110 3.9 2.88 17.0 0 1 4 4 (90.8,172]
3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1 (75.7,99.3]
4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1 (99.3,123]
5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2 (172,254]
6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1 (99.3,123]
7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4 (172,254]
8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2 (51.9,75.7]
9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2 (75.7,99.3]
10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4 (99.3,123]
# ℹ 22 more rows
阅读 https://dplyr.tidyverse.org/reference/mutate-joins.html 内容,说明4个数据集链接函数函数的作用。分别举一个实际例子演示并解释其输出结果。
inner_join() :仅保留两表中键值匹配的行(交集)。
# 自定义电影参演表(角色名 + 电影)
films <- tibble(
name = c("Luke Skywalker", "Darth Vader", "R2-D2", "C-3PO"),
film = c("A New Hope", "The Empire Strikes Back", "A New Hope", "A New Hope")
)
starwars %>%
inner_join(films, by = "name") %>%
select(name, film, species)# A tibble: 4 × 3
name film species
<chr> <chr> <chr>
1 Luke Skywalker A New Hope Human
2 C-3PO A New Hope Droid
3 R2-D2 A New Hope Droid
4 Darth Vader The Empire Strikes Back Human
#结果解释:只返回starwars和films中name匹配的行(如"Leia"不在films中,故被排除)。只包含两个表中都存在的角色(Luke, Darth, R2, C-3PO),显示他们的名字、电影和物种。left_join() :保留左表所有行,右表无匹配时填充NA。
starwars %>%
left_join(films, by = "name") %>%
select(name, film) %>%
head(5)# A tibble: 5 × 2
name film
<chr> <chr>
1 Luke Skywalker A New Hope
2 C-3PO A New Hope
3 R2-D2 A New Hope
4 Darth Vader The Empire Strikes Back
5 Leia Organa <NA>
#结果解释:左表(starwars)所有角色均保留,Leia无电影数据故film为NA。包含starwars表的所有角色(至少前5个),匹配的电影信息(没有的显示NA)。right_join() :保留右表所有行,左表无匹配时填充NA。
films %>%
right_join(starwars, by = "name") %>%
select(name, film) %>%
filter(!is.na(film)) # 仅显示有电影的角色# A tibble: 4 × 2
name film
<chr> <chr>
1 Luke Skywalker A New Hope
2 Darth Vader The Empire Strikes Back
3 R2-D2 A New Hope
4 C-3PO A New Hope
#结果解释:右表(films)所有角色均保留,若films中有starwars不存在的角色(如"Boba Fett"),会被保留但 film为NA(但此处被过滤)。只包含films表中登记过且starwars中也存在的角色(Luke, Darth, R2, C-3PO)。full_join() :保留两表所有行,无匹配处填充NA。
starwars %>%
full_join(films, by = "name") %>%
filter(is.na(film) | is.na(height)) %>%
select(name, film, height) # 可以查看哪些缺失# A tibble: 83 × 3
name film height
<chr> <chr> <int>
1 Leia Organa <NA> 150
2 Owen Lars <NA> 178
3 Beru Whitesun Lars <NA> 165
4 R5-D4 <NA> 97
5 Biggs Darklighter <NA> 183
6 Obi-Wan Kenobi <NA> 182
7 Anakin Skywalker <NA> 188
8 Wilhuff Tarkin <NA> 180
9 Chewbacca <NA> 228
10 Han Solo <NA> 180
# ℹ 73 more rows
#结果解释:所有角色和电影均保留,未匹配的条目用 NA 填充。找出所有不匹配的记录 - 要么在starwars中没有身高数据,要么在films中没有电影数据。