library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.4.3
## Warning: package 'ggplot2' was built under R version 4.4.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## âś” dplyr 1.1.4 âś” readr 2.1.5
## âś” forcats 1.0.0 âś” stringr 1.5.1
## âś” ggplot2 3.5.1 âś” tibble 3.2.1
## âś” lubridate 1.9.4 âś” tidyr 1.3.1
## âś” purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## âś– dplyr::filter() masks stats::filter()
## âś– dplyr::lag() masks stats::lag()
## â„ą Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(pastecs)
## Warning: package 'pastecs' was built under R version 4.4.3
##
## Attaching package: 'pastecs'
##
## The following objects are masked from 'package:dplyr':
##
## first, last
##
## The following object is masked from 'package:tidyr':
##
## extract
pavements<-read.csv("pavements_3192083553624189959.csv")
stat.desc(pavements$PCI)
## nbr.val nbr.null nbr.na min max range
## 9.797200e+04 1.351000e+03 0.000000e+00 0.000000e+00 9.999000e+01 9.999000e+01
## sum median mean SE.mean CI.mean.0.95 var
## 7.725931e+06 8.700000e+01 7.885856e+01 6.046350e-02 1.185077e-01 3.581694e+02
## std.dev coef.var
## 1.892536e+01 2.399912e-01
Variable description: Pavement Condition Index (PCI) is the rating assigned to the roadway segment
pavement<-pavements%>%select(PCI)%>%na.omit(.)
pavement_removed<-pavement%>%filter(PCI>0)
hist(pavement$PCI,breaks=10,probability = T)
lines(density(pavement$PCI),col='red',lwd=2)
pavement_log<-pavement_removed %>% mutate(LOG_PCI=log(PCI)) %>% select(PCI,LOG_PCI)
hist(pavement_log$LOG_PCI,breaks=10,probability = T)
lines(density(pavement_log$LOG_PCI),col='red',lwd=2)
pavement_sqrt<-pavement_removed %>% mutate(PCI_SQRT=sqrt(PCI))
hist(pavement_sqrt$PCI_SQRT,breaks=10,probability = T)
lines(density(pavement_sqrt$PCI_SQRT),col='red',lwd=2)
This log and sqrt did not make my data look more normal. Should I mutate my data to have less obersations? Wouldn’t this be incorrect since its destorying the data to make it fit what I want to see?