##Import data
data <- read_excel("../00_data/myData.xlsx")
data
## # A tibble: 805 × 16
## decimalLatitude decimalLongitude eventDate scientificName taxonConceptID
## <dbl> <dbl> <chr> <chr> <chr>
## 1 -37.6 146. NA Myrmecobius f… https://biodi…
## 2 -35.1 150. 2014-06-05T02… Myrmecobius f… https://biodi…
## 3 -35 118. NA Myrmecobius f… https://biodi…
## 4 -34.7 118. NA Myrmecobius f… https://biodi…
## 5 -34.6 117. NA Myrmecobius f… https://biodi…
## 6 -34.6 117. NA Myrmecobius f… https://biodi…
## 7 -34.6 118. NA Myrmecobius f… https://biodi…
## 8 -34.6 117. NA Myrmecobius f… https://biodi…
## 9 -34.6 117. NA Myrmecobius f… https://biodi…
## 10 -34.6 117. NA Myrmecobius f… https://biodi…
## # ℹ 795 more rows
## # ℹ 11 more variables: recordID <chr>, dataResourceName <chr>, year <chr>,
## # month <chr>, wday <chr>, hour <chr>, day <chr>, dryandra <lgl>, prcp <chr>,
## # tmax <chr>, tmin <chr>
##Pivoting
###wide to long form
data_long <- data %>%
pivot_wider(names_from = year,
values_from = month)
##Seperating and uniting ###Separate a column
data_sep <- data %>%
separate(col =year, into = c("2016", "2017"))
## Warning: Expected 2 pieces. Missing pieces filled with `NA` in 805 rows [1, 2, 3, 4, 5,
## 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...].
###Unite two columns
data_sep %>%
unite(col = "year", month:day, sep = "/")
## # A tibble: 805 × 14
## decimalLatitude decimalLongitude eventDate scientificName taxonConceptID
## <dbl> <dbl> <chr> <chr> <chr>
## 1 -37.6 146. NA Myrmecobius f… https://biodi…
## 2 -35.1 150. 2014-06-05T02… Myrmecobius f… https://biodi…
## 3 -35 118. NA Myrmecobius f… https://biodi…
## 4 -34.7 118. NA Myrmecobius f… https://biodi…
## 5 -34.6 117. NA Myrmecobius f… https://biodi…
## 6 -34.6 117. NA Myrmecobius f… https://biodi…
## 7 -34.6 118. NA Myrmecobius f… https://biodi…
## 8 -34.6 117. NA Myrmecobius f… https://biodi…
## 9 -34.6 117. NA Myrmecobius f… https://biodi…
## 10 -34.6 117. NA Myrmecobius f… https://biodi…
## # ℹ 795 more rows
## # ℹ 9 more variables: recordID <chr>, dataResourceName <chr>, `2016` <chr>,
## # `2017` <chr>, year <chr>, dryandra <lgl>, prcp <chr>, tmax <chr>,
## # tmin <chr>