| Characteristic | Overall | Public N = 91 |
Supplementary N = 89 |
p-value |
|---|---|---|---|---|
| Age (years) | 39 (16) | 45 (15) | 32 (15) | <0.001 |
| Sex | 0.8 | |||
| Male | 67 (37%) | 33 (36%) | 34 (38%) | |
| Female | 113 (63%) | 58 (64%) | 55 (62%) | |
| Previous anesthesia | 167 (93%) | 85 (93%) | 82 (92%) | 0.7 |
| Previous PONV | 41 (23%) | 20 (22%) | 21 (24%) | 0.8 |
| Previous postoperative pain | 113 (63%) | 55 (60%) | 58 (65%) | 0.5 |
| Previous postoperative hypothermia | 35 (19%) | 15 (16%) | 20 (22%) | 0.3 |
| Previous intraoperative awareness | 9 (5.0%) | 5 (5.5%) | 4 (4.5%) | >0.9 |
| Characteristic | Public N = 911 |
Supplementary N = 891 |
p-value2 |
|---|---|---|---|
| WTP - PONV (50% efficacy) | 32 (1, 128) | 64 (32, 256) | 0.001 |
| WTP - PONV (100% efficacy) | 128 (32, 256) | 256 (128, 1,024) | <0.001 |
| WTP - Awareness (50% efficacy) | 32 (1, 256) | 256 (64, 1,024) | <0.001 |
| WTP - Awareness (100% efficacy) | 256 (64, 512) | 2,048 (512, 4,096) | <0.001 |
| WTP - Pain (50% efficacy) | 32 (1, 128) | 256 (64, 512) | <0.001 |
| WTP - Pain (100% efficacy) | 256 (32, 512) | 512 (256, 2,048) | <0.001 |
| WTP - Hypothermia (50% efficacy) | 16 (1, 128) | 128 (32, 512) | <0.001 |
| WTP - Hypothermia (100% efficacy) | 128 (32, 512) | 512 (128, 1,024) | <0.001 |
| 1 Median (Q1, Q3) | |||
| 2 Wilcoxon rank sum test | |||
Esse gráfico radial consolida o impacto do histórico prévio de cada complicação no WTP, mostrando claramente como ter experimentado previamente a complicação influencia o valor mediano disposto a pagar.
bd_long_all <- bd %>%
pivot_longer(
cols = c(ponv50, ponv0, recall50, recall0, pain50, pain0, hypothermia50, hypothermia0),
names_to = "Complication_Efficacy",
values_to = "WTP"
) %>%
mutate(
Efficacy = ifelse(grepl("50$", Complication_Efficacy), "50%", "100%"),
Complication = case_when(
grepl("ponv", Complication_Efficacy) ~ "PONV",
grepl("recall", Complication_Efficacy) ~ "Awareness",
grepl("pain", Complication_Efficacy) ~ "Pain",
grepl("hypothermia", Complication_Efficacy) ~ "Hypothermia"
)
)
model <- lmer(WTP ~ contas + Efficacy + sexo + idade + (1|id), data = bd_long_all)
# Tabela consolidada dos resultados
model_summary <- tbl_regression(model,
exponentiate = FALSE,
label = list(
contas ~ "Healthcare Coverage (Supplementary vs Public)",
Efficacy ~ "Efficacy (100% vs 50%)",
sexo ~ "Sex (Female vs Male)",
idade ~ "Age (years)"
)) %>%
add_global_p() %>%
modify_header(label = "**Predictors**")
model_summary
| Predictors | Beta | 95% CI1 | p-value |
|---|---|---|---|
| Healthcare Coverage (Supplementary vs Public) | 0.004 | ||
| Public | — | — | |
| Supplementary | 247 | 79, 416 | |
| Efficacy (100% vs 50%) | <0.001 | ||
| 100% | — | — | |
| 50% | -508 | -581, -434 | |
| Sex (Female vs Male) | 0.2 | ||
| Male | — | — | |
| Female | -81 | -202, 40 | |
| Age (years) | -4.6 | -8.5, -0.71 | 0.020 |
| 1 CI = Confidence Interval | |||