Ejemplo Visual del proceso de prueba de hipótesis
(Ho vrs. Ha), con la prueba de T
Tenemos dos grupos de datos de peso. En este caso, esperamos que el
segundo grupo tenga un promedio de peso mayor que el primero (
Ha : ŷ1 <
ŷ2 ). Utilizando la prueba de T de una cola,
pretendemos rechazar la hipótesis de “No diferencia” (
HO : ŷ1 = ŷ2
)

Datos
t <- t.test(data= pesos.n,
peso ~ group,
alternative = "less")
t
Welch Two Sample t-test
data: peso by group
t = -2.635, df = 198, p-value = 0.004539
alternative hypothesis: true difference in means between group group1 and group group2 is less than 0
95 percent confidence interval:
-Inf -0.7456836
sample estimates:
mean in group group1 mean in group group2
165.8301 167.8301
La cantidad de errores estándar que separa a los promedios de las dos
poblaciones ( N1 y N2 ) es
t= -2.64. Si lo vemos en una distribución teórica de valores de
t sacados de muestras de la misma población, vemos qué tan probable es
encontrar ese valor de t, y este es muy poco probable
(0.0045)

Conclusión: La probabilidad de error al rechazar la
HO (μ1 = μ2) es “baja”
(P= 0.0045). Por lo tanto, con tal confianza (1-P=
0.9955 ), concluimos que el promedio poblaciónal del segundo grupo, es
mayor que el del primer grupo.
LS0tDQp0aXRsZTogIlQudGVzdHNfYWx0ZXJuYXRpdmUgaHlwb3RoZXNpcyINCmF1dGhvcjogIkZlZGVyaWNvIEouIFZpbGxhdG9yby1QYXoiDQpvdXRwdXQ6IA0KICBodG1sX25vdGVib29rOiANCiAgICB0b2M6IGZhbHNlDQogICAgdG9jX2Zsb2F0OiB0cnVlDQogICAgY29kZV9mb2xkaW5nOiBzaG93DQogICAgZmlnX2hlaWdodDogNg0KZGF0ZTogImByIFN5cy5EYXRlKClgIg0KLS0tICANCg0KYGBge3IgZWNobz1GQUxTRSwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0NCmxpYnJhcnkodGlkeXZlcnNlKQ0KbGlicmFyeShSY21kck1pc2MpDQpgYGANCg0KKipFamVtcGxvIFZpc3VhbCBkZWwgcHJvY2VzbyBkZSBwcnVlYmEgZGUgaGlww7N0ZXNpcyAoKkhvKiB2cnMuICpIYSopLCBjb24gbGEgcHJ1ZWJhIGRlIFQqKiAgDQoNClRlbmVtb3MgZG9zIGdydXBvcyBkZSBkYXRvcyBkZSBwZXNvLiBFbiBlc3RlIGNhc28sIGVzcGVyYW1vcyBxdWUgZWwgc2VndW5kbyBncnVwbyB0ZW5nYSB1biBwcm9tZWRpbyBkZSBwZXNvIG1heW9yIHF1ZSBlbCBwcmltZXJvICggX0h+YX5fIDogX8W3fjF+XyA8IF/Ft34yfl8gKS4gVXRpbGl6YW5kbyBsYSBwcnVlYmEgZGUgVCBkZSB1bmEgY29sYSwgcHJldGVuZGVtb3MgcmVjaGF6YXIgbGEgaGlww7N0ZXNpcyBkZSAiTm8gZGlmZXJlbmNpYSIgICggX0h+T35fIDogX8W3fjF+XyA9IF/Ft34yfl8gKSAgDQoNCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFLCBlY2hvPUZBTFNFfQ0KbGlicmFyeShmbGV4ZGFzaGJvYXJkKQ0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KA0KICBlY2hvID0gRkFMU0UsDQoJbWVzc2FnZSA9IEZBTFNFLA0KICB3YXJuaW5nID0gRkFMU0UsDQoJaW5jbHVkZSA9IFRSVUUNCikNCmBgYCANCg0KYGBge3J9DQrOvDEgPSAxNjUuODsgz4MxPSA2LjMNCs68MiA9IDE2Ny44OyDPgzI9IDYuMw0KIw0Kc2V0LnNlZWQoMTIzNjc2KQ0KbjEgPC0gcm5vcm0oMTAwLCBtZWFuID0gzrwxLCBzZD0gz4MxKQ0Kc2V0LnNlZWQoMTIzNjc2KQ0KbjIgPC0gcm5vcm0oMTAwLCBtZWFuID0gzrwyLCBzZD0gz4MyKQ0KIw0Kbi5sZW5naHQxIDwtIGxlbmd0aChuMSkNCm4ubGVuZ3RoMiA8LSBsZW5ndGgobjIpDQojIyMNCnBlc29zLm4gPC0gZGF0YS5mcmFtZShjYmluZChwZXNvID0gYyhuMSxuMiksDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgZ3JvdXAgPSBjKHJlcCgiZ3JvdXAxIiwgMTAwKSwgcmVwKCJncm91cDIiLCAxMDApICkgKSApDQpwZXNvcy5uJGdyb3VwIDwtIGFzLmZhY3RvcihwZXNvcy5uJGdyb3VwKSA7IHBlc29zLm4kcGVzbyA8LSBhcy5udW1lcmljKHBlc29zLm4kcGVzbykNCiNzdHIocGVzb3MubikNCmBgYCAgDQoNCmBgYHtyfQ0KIyMjIyMjIyMjIyMjIyMNCmxpYnJhcnkoZ2dwbG90MikNCiMNCnAgPC0gZ2dwbG90KGRhdGE9cGVzb3MubiwgYWVzKHg9IGdyb3VwLCBjb2xvcj0gZ3JvdXApKSArDQogICAgI2dlb21fcG9pbnQoYWVzKHk9IHBlc28pLCBwb3NpdGlvbiA9IHBvc2l0aW9uX2ppdHRlcih3aWR0aD0wLjUpLA0KICAgICMgICAgICAgICAgIHNoYXBlID0gMjEsIHNpemUgPSAyLA0KICAgICMgICAgICAgICAgIGZpbGwgPSAiTkEiLCBzdHJva2U9MC4xKSArIA0KICAgIGdlb21fcG9pbnQoZGF0YT0gcGVzb3MubiwgY29sPSAiYmxhY2siLA0KICAgICAgICAgICAgICAgYWVzKHk9IHBlc28sIHg9IGdyb3VwICksIHBvc2l0aW9uID0gcG9zaXRpb25faml0dGVyKHdpZHRoPTAuMiksDQogICAgICAgICAgICAgICBzaGFwZSA9IDE5LCBzaXplID0gMSAsIHNob3cubGVnZW5kID0gRkFMU0UNCiAgICAgICAgICAgICAgICMsDQogICAgICAgICAgICAgICAjZmlsbCA9ICJOQSIsIHN0cm9rZT0wLjENCiAgICApICsgIA0KICAgIGdlb21fYm94cGxvdChkYXRhID0gcGVzb3Mubiwgb3V0bGllci5zaGFwZSA9IE5BLA0KICAgICAgICAgICAgICAgICAgYWVzKHkgPSBwZXNvKSwgYWxwaGEgPSAwKSANCiAgIyAgc3RhdF9zdW1tYXJ5KGRhdGE9IHBlc29zLm4sDQogICAjICAgICAgICAgICAgICBhZXMoeSA9IHBlc28sIHg9IGdyb3VwKSwgZ2VvbSA9ICJlcnJvcmJhciIsIHdpZHRoPTAuMDUsDQogICAgIyAgICAgICAgICAgICBmdW4uZGF0YSA9ICJtZWFuX2NsX25vcm1hbCIsIGx3ZD0gMC43LCBzaG93LmxlZ2VuZCA9IFRSVUUpDQpwDQojcGxvdGx5OjpnZ3Bsb3RseShwKQ0KYGBgICANCiMjIyBEYXRvcw0KYGBge3J9DQpwZXNvcy5uDQpgYGANCg0KDQpgYGB7ciBlY2hvPVRSVUUsIGluY2x1ZGU9VFJVRX0NCnQgPC0gdC50ZXN0KGRhdGE9IHBlc29zLm4sDQogICAgICAgICAgICBwZXNvIH4gZ3JvdXAsDQogICAgICAgYWx0ZXJuYXRpdmUgPSAibGVzcyIpDQp0DQpgYGAgICANCg0KYGBge3IgaW5jbHVkZT1GQUxTRX0NCnQuYyA8LSB0JHN0YXRpc3RpYw0KcC52YWx1ZSA8LSB0JHAudmFsdWUNCnQNCmBgYCAgDQoNCkxhIGNhbnRpZGFkIGRlIGVycm9yZXMgZXN0w6FuZGFyIHF1ZSBzZXBhcmEgYSBsb3MgcHJvbWVkaW9zIGRlIGxhcyBkb3MgcG9ibGFjaW9uZXMgKCBfTn4xfl8geSBfTn4yfl8gKSBlcyBfdF89IGByIHJvdW5kKHQuYywyKWAuIFNpIGxvIHZlbW9zIGVuIHVuYSBkaXN0cmlidWNpw7NuIHRlw7NyaWNhIGRlIHZhbG9yZXMgZGUgdCBzYWNhZG9zIGRlIG11ZXN0cmFzIGRlIGxhIG1pc21hIHBvYmxhY2nDs24sIHZlbW9zIHF1w6kgdGFuIHByb2JhYmxlIGVzIGVuY29udHJhciBlc2UgdmFsb3IgZGUgX3RfLCB5IGVzdGUgZXMgbXV5IHBvY28gcHJvYmFibGUgKGByIHJvdW5kKHQkcC52YWx1ZSw0KWApICANCg0KYGBge3J9DQpuMT0gMTAwDQpuczE9IDEwMDAwICAgICAgICAgICAgICAgICAgIyBTaW11bGFuZG8gMTAsMDAwIG11ZXN0cmFzDQptZWFuMSA8LSBudW1lcmljKG5zMSkgICAgICMgVmVjdG9yIGRlIG1lZGlhcyBkZSBjYWRhIG11ZXN0cmENCnNkMSA8LSBudW1lcmljKG5zMSkgICAgICAgIyBWZWN0b3IgcGFyYSBsYXMgZGUgZGUgYy9tdWVzdHJhDQojIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjICANCm4yPSAxMDANCm5zMj0gMTAwMDAgICAgICAgICAgICAgICAgICAgICAjIFNpbXVsYW5kbyAxMCwwMDAgbXVlc3RyYXMNCm1lYW4yIDwtIG51bWVyaWMobnMyKSAgICAgIyBWZWN0b3IgZGUgbWVkaWFzIGRlIGNhZGEgbXVlc3RyYQ0Kc2QyIDwtIG51bWVyaWMobnMyKSAgICAgICAjIFZlY3RvciBwYXJhIGxhcyBkZSBkZSBjL211ZXN0cmENCmVlMiA8LSBudW1lcmljKG5zMikgICAgICAgIyBWZWN0b3IgcGFyYSBsb3MgZXJyb3JlcyB0w61waWNvcw0KIyMjIFNpbXVsYW5kbyBsb3MgbXVlc3RyZW9zIGFsZWF0b3Jpb3MgIyMjIyMjIyMjIyMjDQpmb3IgKGkgaW4gMTpuczEpIHsNCiAgeDEgPC0gcm5vcm0obj1uMSwgbWVhbj3OvDEsIHNkPSDPgzEpICAjIG11ZXN0cmEgYWxlYXRvcmlhIGRlIHRhbWHDsW8gKG4pDQogIG1lYW4xW2ldIDwtIG1lYW4oeDEpDQogIHNkMVtpXSA8LSBzZCh4MSkNCn0gIA0KIyMjIyMjIyMjIyMjIyMjIyMjICANCmZvciAoaSBpbiAxOm5zMikgew0KICB4MiA8LSBybm9ybShuPW4yLCBtZWFuPc68MSwgc2Q9IM+DMSkgICMgbXVlc3RyYSBhbGVhdG9yaWEgZGUgdGFtYcOxbyAobikNCiAgbWVhbjJbaV0gPC0gbWVhbih4MikNCiAgc2QyW2ldIDwtIHNkKHgyKQ0KICBlZTJbaV0gPC0gc2QoeDIpL3NxcnQobjIpDQp9DQojIyMjIyMjIyMjIyMNCnR3by50YWlscy50IDwtIHF0KHA9IGMoMC4wMjUsIDAuOTc1KSwgZGY9IDk5Kzk5ICkNCm9uZS50YWlsLnQgPC0gcXQocD0gMC4wNSwgZGY9IDQ5KzQ5ICkNCiMNCmEgPC0gZGF0YS5mcmFtZSggY2JpbmQoInBhaXIiPSBjKDE6MTAwMDApLCBtZWFuMSxzZDEsbWVhbjIsc2QyDQogICAgICAgICAgICAgICAgICAgICAgICMsZWUyDQopICkgICAgICAgICMgMTAwIG11ZXN0cmFzIGRlIGMvTiBjb24gc3VzIElDLjk1JSBwYXJhIG11DQphJHQgPC0gKCBtZWFuMS0gbWVhbjIgKS8gc3FydCgoKHNkMV4yKS9uMSkgKyAgKChzZDJeMikvbjIpKSAgIyBQcnVlYmEgZGUgdCBwYXJhIGNhZGEgcGFyIGRlIG11ZXN0cmFzDQojIERpc3RyaWJ1Y2nDs24gdGXDs3JpY2EgZGUgVCANCmhpc3QoYSR0LCAgeGxpbT1jKG1lYW4oYSR0KS0gKDQgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICArICgoNC1hYnModC5jKSkpICswLjcgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICApLA0KICAgICAgICAgICAgICAgICAgKyAobWVhbihhJHQpICsgKDQNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjK2Ficyh0LmMpKQ0KICAgICAgICAgICAgICAgICAgICAgKSkpLA0KICAgICBwcm9iYWJpbGl0eSA9IFRSVUUsIGJvcmRlcj0gImdyYXkiLCBjb2wgPSAid2hpdGUiLA0KICAgICBtYWluID0gIlQgZGlzdHJpYnV0aW9uIiwgeGxhYiA9ICJ0IiwgeWxhYiA9ICJQcm9iYWJpbGl0eSIpDQpsaW5lcyhkZW5zaXR5KGEkdCksIGNvbD0iYmxhY2siKQ0KI2FibGluZSh2PSBtZWFuKGEkdCksIGNvbD0gMywgbHdkPTIpDQojYWJsaW5lKHY9IDAsIGNvbD0gMiwgbHdkPTIsIGx0eT0gImRhc2hlZCIpIA0KI2FibGluZSh2PSBxdWFudGlsZShhJHQsIHByb2I9YygwLjAyNSwgMC45NzUpKSwgY29sPSAzLCBsd2Q9MiwgbHR5PSAiZGFzaGVkIikgDQpkZW4gPC0gZGVuc2l0eShhJHQpDQojDQp2YWx1ZTEgPC0gb25lLnRhaWwudA0KI3ZhbHVlMiA8LSB0d28udGFpbHMudFsxXQ0KI3BvbHlnb24oYyhkZW4keFtkZW4keCA8PSB2YWx1ZTEgXSwgdmFsdWUxKSwNCiAjICAgICAgIGMoZGVuJHlbZGVuJHggPD0gdmFsdWUxIF0sIDApLA0KICAgICAgICAjY29sID0gInNsYXRlYmx1ZTEiDQogICMgICAgICBjb2w9ICIjQkVCRUJFIiwgDQogICMgICAgICBhbHBoYSA9IDAuMSwNCiAgIyAgICAgIGJvcmRlciA9IDEpDQojDQp2YWx1ZTIgPC0gdC5jDQpwb2x5Z29uKGMoZGVuJHhbZGVuJHggPD0gdmFsdWUyIF0sIHZhbHVlMiksYyhkZW4keVtkZW4keCA8PSB2YWx1ZTIgXSwgMCksDQogICAgICAgICNjb2wgPSAic2xhdGVibHVlMSINCiAgICAgICAgY29sPSAiZ3JheSIsDQogICAgICAgIGJvcmRlciA9ICJyZWQ0IikNCiMNCiN2YWx1ZTMgPC0gdHdvLnRhaWxzLnRbMl0NCiNwb2x5Z29uKGMoZGVuJHhbZGVuJHggPj0gdmFsdWUxIF0sIHZhbHVlMSksDQojICAgICAgICBjKGRlbiR5W2RlbiR4ID49IHZhbHVlMSBdLCAwKSwNCiMgICAgICAgIGNvbCA9ICJ3aGl0ZSIsDQogICAgICAgICMgICAgY29sPSAiI0JFQkVCRSIsDQojICAgICAgICBib3JkZXIgPSBUKQ0KIw0KYWJsaW5lKHY9IHQuYywgY29sPSAiYmxhY2siLCBsd2Q9MywgbHR5PSAiZGFzaGVkIikNCmFibGluZSh2PSBxdChwPWMoMC4wNSksIGRmPSA5OSs5OSksIGNvbD0gImdyZWVuIiwgbHdkPTMsIGx0eT0gImRhc2hlZCIpICANCg0KdGV4dCh4PSB0LmMsIHk9IDAuMTQsDQogICAgIGxhYmVsPSBwYXN0ZSgndD0nLHJvdW5kKHQuYywyKSwNCiAgICAgICAgICAgICAgICAgICcgICAgICAgICAgICAgJyksDQogICAgIHNydD0gMCkNCnRleHQoeD0gdC5jLCB5PSAwLjExLA0KICAgICBsYWJlbD0gcGFzdGUoJ1A9Jyxyb3VuZCh0JHAudmFsdWUsMyksDQogICAgICAgICAgICAgICAgICAnICAgICAgICAgICAgICcpLA0KICAgICBzcnQ9IDApDQp0ZXh0KHg9IG9uZS50YWlsLnQsIHk9IDAuMiwNCiAgICAgbGFiZWw9IHBhc3RlKCdIYTogJywndCA8IDAnLCANCiAgICAgICAgICAgICAgICAgICcgICAgICAgICAgICAgICAnKSwgY29sPSJncmVlbjQiLA0KICAgICBzcnQ9IDApDQp0ZXh0KHg9IG9uZS50YWlsLnQsIHk9IDAuMTcsDQogICAgIGxhYmVsPSBwYXN0ZSgnUD0nLCcwLjA1JywgDQogICAgICAgICAgICAgICAgICAnICAgICAgICAgICAgICAgJyksIGNvbD0iZ3JlZW40IiwNCiAgICAgc3J0PSAwKQ0KIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIw0KYGBgICANCkNvbmNsdXNpw7NuOiBMYSBwcm9iYWJpbGlkYWQgZGUgZXJyb3IgYWwgcmVjaGF6YXIgbGEgX0h+T35fICAozrx+MX4gPSDOvH4yfikgZXMgICJiYWphIiAoX1BfPSBgciByb3VuZChwLnZhbHVlLDQpYCkuIFBvciBsbyB0YW50bywgY29uIHRhbCBjb25maWFuemEgKF8xLVBfPSBgciByb3VuZCgxLXAudmFsdWUsNClgICksIGNvbmNsdWltb3MgcXVlIGVsIHByb21lZGlvIHBvYmxhY2nDs25hbCBkZWwgc2VndW5kbyBncnVwbywgZXMgbWF5b3IgcXVlIGVsIGRlbCBwcmltZXIgZ3J1cG8uDQoNCmBgYHtyfQ0KIyMjIyMjIyMjIyMjIyMNCmxpYnJhcnkoZ2dwbG90MikNCiMNCnAgPC0gZ2dwbG90KGRhdGE9cGVzb3MubiwgYWVzKHg9IGdyb3VwLCBjb2xvcj0gZ3JvdXApKSArDQogICAgI2dlb21fcG9pbnQoYWVzKHk9IHBlc28pLCBwb3NpdGlvbiA9IHBvc2l0aW9uX2ppdHRlcih3aWR0aD0wLjUpLA0KICAgICMgICAgICAgICAgIHNoYXBlID0gMjEsIHNpemUgPSAyLA0KICAgICMgICAgICAgICAgIGZpbGwgPSAiTkEiLCBzdHJva2U9MC4xKSArIA0KICMgICBnZW9tX3BvaW50KGRhdGE9IHBlc29zLm4sIGNvbD0gImJsYWNrIiwNCiAgIyAgICAgICAgICAgICBhZXMoeT0gcGVzbywgeD0gZ3JvdXAgKSwgcG9zaXRpb24gPSBwb3NpdGlvbl9qaXR0ZXIod2lkdGg9MC4yKSwNCiAgICMgICAgICAgICAgICBzaGFwZSA9IDE5LCBzaXplID0gMSAsIHNob3cubGVnZW5kID0gRkFMU0UNCiAgICAgICAgICAgICAgICMsDQogICAgICAgICAgICAgICAjZmlsbCA9ICJOQSIsIHN0cm9rZT0wLjENCiAgIyAgKSArICANCiAgIyAgZ2VvbV9ib3hwbG90KGRhdGEgPSBwZXNvcy5uLCBvdXRsaWVyLnNoYXBlID0gTkEsDQogICAjICAgICAgICAgICAgICAgYWVzKHkgPSBwZXNvKSwgYWxwaGEgPSAwKSANCiAgICBzdGF0X3N1bW1hcnkoZGF0YT0gcGVzb3MubiwNCiAgICAgICAgICAgICAgICAgYWVzKHkgPSBwZXNvLCB4PSBncm91cCksIGdlb20gPSAicG9pbnRyYW5nZSIsIHdpZHRoPTAuMDUsDQogICAgICAgICAgICAgICAgIGZ1bi5kYXRhID0gIm1lYW5fY2xfbm9ybWFsIiwgbHdkPSAwLjcsIHNob3cubGVnZW5kID0gVFJVRSkNCiNwDQpwbG90bHk6OmdncGxvdGx5KHApDQpgYGAgDQoNCg0KDQo=