Update the title with your information. Make sure to include identification information so that we know it is your submission.
Also update the author name and date accordingly.
Check out the Source Code from the top-right corner
</>Code
menu.
In the following R code chunk, load_packages
is the code
chunk name. include=FALSE
suggests that the code chunk will
run, but the code itself and its outputs will not be included in the
rendered HTML. echo=TRUE
in the following code chunk
suggests that the code and results from running the code will be
included in the rendered HTML.
Don’t use a single chunk for the entire assignment. Break it into multiple chunks.
nyc_covid_data_testing<-read_csv("C:/Users/dwvil/Documents/SPRING 2025/R LANGUAGE/R-Spatial/R-Spatial/Data/Section_08/R-Spatial_II_Lab/R-Spatial_II_Lab/tests-by-zcta_2020_04_12.csv")
## Rows: 178 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (4): MODZCTA, Positive, Total, zcta_cum.perc_pos
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
nyc_postal <- st_read("C:/Users/dwvil/Documents/SPRING 2025/R LANGUAGE/R-Spatial/R-Spatial/Data/R-Spatial_I_Lab/ZIP_CODE_040114/ZIP_CODE_040114.shp")
## Reading layer `ZIP_CODE_040114' from data source
## `C:\Users\dwvil\Documents\SPRING 2025\R LANGUAGE\R-Spatial\R-Spatial\Data\R-Spatial_I_Lab\ZIP_CODE_040114\ZIP_CODE_040114.shp'
## using driver `ESRI Shapefile'
## Simple feature collection with 263 features and 12 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: 913129 ymin: 120020.9 xmax: 1067494 ymax: 272710.9
## Projected CRS: NAD83 / New York Long Island (ftUS)
NYS_Health_Facility<-read_csv("C:/Users/dwvil/Documents/SPRING 2025/R LANGUAGE/R-Spatial/R-Spatial/Data/R-Spatial_I_Lab/NYS_Health_Facility.csv")
## Rows: 3990 Columns: 36
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (28): Facility Name, Short Description, Description, Facility Open Date,...
## dbl (8): Facility ID, Facility Phone Number, Facility Fax Number, Facility ...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
NYS_Retail_Food_Stores <- read_csv(
"C:/Users/dwvil/Documents/SPRING 2025/R LANGUAGE/R-Spatial/R-Spatial/Data/R-Spatial_I_Lab/nys_retail_food_Store_xy.csv",
locale = locale(encoding = "Latin1")
)
## Rows: 29389 Columns: 18
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (11): ï..County, Operation.Type, Establishment.Type, Entity.Name, DBA.Na...
## dbl (4): License.Number, Zip.Code, Y, X
## num (1): Square.Footage
## lgl (2): Address.Line.2, Address.Line.3
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
nyc_covid_data_testing <- nyc_covid_data_testing %>%
mutate(MODZCTA = as.character(MODZCTA))
nyc_postal_Joined <- nyc_postal %>%
left_join(nyc_covid_data_testing, by = c("ZIPCODE" = "MODZCTA"))
Quarto markdown is different from R markdown in terms of chunk options. See chunk options at Quarto website.
nycFoodStoreSF <- NYS_Retail_Food_Stores %>%
dplyr::filter(Establishment.Type %in% c("A")) %>% # Filtering specific food store types
dplyr::group_by(Zip.Code) %>%
dplyr::summarise(FoodStoreNum = n())
# Convert Zip.Code to character to match ZIPCODE
nycFoodStoreSF <- nycFoodStoreSF %>%
dplyr::mutate(Zip.Code = as.character(Zip.Code))
# Perform the join
nyc_postal_food_storesA <- nyc_postal %>%
left_join(nycFoodStoreSF, by = c("ZIPCODE" = "Zip.Code"))
# Filter for nursing homes (NH) from the health facility dataset
nycNursingHome <- NYS_Health_Facility %>%
dplyr::filter(`Short Description` == "NH") %>%
dplyr::group_by(`Facility Zip Code`)
nyc_postal_nursing_homes <- nyc_postal %>%
left_join(nycNursingHome, by = c("ZIPCODE" = "Facility Zip Code"))
## Warning in sf_column %in% names(g): Detected an unexpected many-to-many relationship between `x` and `y`.
## ℹ Row 6 of `x` matches multiple rows in `y`.
## ℹ Row 6 of `y` matches multiple rows in `x`.
## ℹ If a many-to-many relationship is expected, set `relationship =
## "many-to-many"` to silence this warning.
nycCensus <- sf::st_read('C:/Users/dwvil/Documents/SPRING 2025/R LANGUAGE/R-Spatial/R-Spatial/Data/Section_08/R-Spatial_II_Lab/R-Spatial_II_Lab/2010 Census Tracts/geo_export_1dc7b645-647b-4806-b9a0-7b79660f120a.shp', stringsAsFactors = FALSE)
## Reading layer `geo_export_1dc7b645-647b-4806-b9a0-7b79660f120a' from data source `C:\Users\dwvil\Documents\SPRING 2025\R LANGUAGE\R-Spatial\R-Spatial\Data\Section_08\R-Spatial_II_Lab\R-Spatial_II_Lab\2010 Census Tracts\geo_export_1dc7b645-647b-4806-b9a0-7b79660f120a.shp'
## using driver `ESRI Shapefile'
## Simple feature collection with 2165 features and 11 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: -74.25559 ymin: 40.49612 xmax: -73.70001 ymax: 40.91553
## Geodetic CRS: WGS84(DD)
nycCensus %<>% dplyr::mutate(cntyFIPS = case_when(
boro_name == 'Bronx' ~ '005',
boro_name == 'Brooklyn' ~ '047',
boro_name == 'Manhattan' ~ '061',
boro_name == 'Queens' ~ '081',
boro_name == 'Staten Island' ~ '085'),
tractFIPS = paste(cntyFIPS, ct2010, sep='')
)
acsData <- readLines("C:/Users/dwvil/Documents/SPRING 2025/R LANGUAGE/R-Spatial/R-Spatial/Data/Section_08/R-Spatial_II_Lab/R-Spatial_II_Lab/ACSDP5Y2018.DP05_data_with_overlays_2020-04-22T132935.csv") %>%
magrittr::extract(-2) %>%
textConnection() %>%
read.csv(header=TRUE, quote= "\"") %>%
dplyr::select(GEO_ID,
totPop = DP05_0001E, elderlyPop = DP05_0024E, # >= 65
malePop = DP05_0002E, femalePop = DP05_0003E,
whitePop = DP05_0037E, blackPop = DP05_0038E,
asianPop = DP05_0067E, hispanicPop = DP05_0071E,
adultPop = DP05_0021E, citizenAdult = DP05_0087E) %>%
dplyr::mutate(censusCode = stringr::str_sub(GEO_ID, -9,-1));
acsData %>%
magrittr::extract(1:10,)
## GEO_ID totPop elderlyPop malePop femalePop whitePop blackPop
## 1 1400000US36005000100 7080 51 6503 577 1773 4239
## 2 1400000US36005000200 4542 950 2264 2278 2165 1279
## 3 1400000US36005000400 5634 710 2807 2827 2623 1699
## 4 1400000US36005001600 5917 989 2365 3552 2406 2434
## 5 1400000US36005001900 2765 76 1363 1402 585 1041
## 6 1400000US36005002000 9409 977 4119 5290 3185 4487
## 7 1400000US36005002300 4600 648 2175 2425 479 2122
## 8 1400000US36005002400 172 0 121 51 69 89
## 9 1400000US36005002500 5887 548 2958 2929 903 1344
## 10 1400000US36005002701 2868 243 1259 1609 243 987
## asianPop hispanicPop adultPop citizenAdult censusCode
## 1 130 2329 6909 6100 005000100
## 2 119 3367 3582 2952 005000200
## 3 226 3873 4507 4214 005000400
## 4 68 3603 4416 3851 005001600
## 5 130 1413 2008 1787 005001900
## 6 29 5905 6851 6170 005002000
## 7 27 2674 3498 3056 005002300
## 8 14 0 131 42 005002400
## 9 68 4562 4237 2722 005002500
## 10 0 1985 1848 1412 005002701
popData <- merge(nycCensus, acsData, by.x ='tractFIPS', by.y = 'censusCode')
nycCensus <- st_transform(nycCensus, st_crs(nyc_postal))
popData <- nycCensus %>%
left_join(acsData, by = c("tractFIPS" = "censusCode"))
nycCensus_ZIP <- st_join(popData, nyc_postal, join = st_intersects)
colnames(nycCensus_ZIP)
## [1] "boro_code" "boro_ct201" "boro_name" "cdeligibil" "ct2010"
## [6] "ctlabel" "ntacode" "ntaname" "puma" "shape_area"
## [11] "shape_leng" "cntyFIPS" "tractFIPS" "GEO_ID" "totPop"
## [16] "elderlyPop" "malePop" "femalePop" "whitePop" "blackPop"
## [21] "asianPop" "hispanicPop" "adultPop" "citizenAdult" "ZIPCODE"
## [26] "BLDGZIP" "PO_NAME" "POPULATION" "AREA" "STATE"
## [31] "COUNTY" "ST_FIPS" "CTY_FIPS" "URL" "SHAPE_AREA"
## [36] "SHAPE_LEN" "geometry"
acs_zip_aggregated <- nycCensus_ZIP %>%
dplyr::group_by(ZIPCODE) %>%
dplyr::summarise(across(c(totPop, elderlyPop, malePop, femalePop,
whitePop, blackPop, asianPop, hispanicPop,
adultPop, citizenAdult), sum, na.rm = TRUE))
## Warning: There was 1 warning in `dplyr::summarise()`.
## ℹ In argument: `across(...)`.
## ℹ In group 1: `ZIPCODE = "00083"`.
## Caused by warning:
## ! The `...` argument of `across()` is deprecated as of dplyr 1.1.0.
## Supply arguments directly to `.fns` through an anonymous function instead.
##
## # Previously
## across(a:b, mean, na.rm = TRUE)
##
## # Now
## across(a:b, \(x) mean(x, na.rm = TRUE))
nyc_postal <- st_join(nyc_postal, acs_zip_aggregated, join = st_intersects)
nyc_postal <- st_as_sf(nyc_postal)