final_cohort_1_no_missing <- final_cohort_1 %>% drop_na() %>% select(-RACE,-RACE_cate,-CLM_FROM_1year_num,-ICU_DAYS_1year_num,-HEMOSESSIONS_3year,-time_to_death_3year,-time_to_death_3year_month)
######### training and testing
index <- createDataPartition(final_cohort_1_no_missing$time_to_death_1year_status,p=.8,list = F,times = 1)
#training
training <- final_cohort_1_no_missing[index,]
#test
testing <- final_cohort_1_no_missing[-index,]
##################### CHECK zero-variance
nearZeroVar(training ,saveMetrics = T)
## freqRatio percentUnique zeroVar nzv
## HISPANIC 7.021185 0.0006914004 FALSE FALSE
## race_cat_4 2.501681 0.0013828007 FALSE FALSE
## SEX 1.341853 0.0006914004 FALSE FALSE
## state_cat 2.161475 0.0013828007 FALSE FALSE
## age 1.013715 0.0286931150 FALSE FALSE
## sex_cat 1.341853 0.0006914004 FALSE FALSE
## COMO_CHF 2.049259 0.0006914004 FALSE FALSE
## COMO_COPD 8.083339 0.0006914004 FALSE FALSE
## COMO_TOBAC 14.152061 0.0006914004 FALSE FALSE
## COMO_CANC 12.086681 0.0006914004 FALSE FALSE
## COMO_ASHD 5.510499 0.0006914004 FALSE FALSE
## COMO_OTHCARD 3.449387 0.0006914004 FALSE FALSE
## COMO_CVATIA 9.258458 0.0006914004 FALSE FALSE
## COMO_PVD 8.005853 0.0006914004 FALSE FALSE
## COMO_HTN 7.900828 0.0006914004 FALSE FALSE
## COMO_AMP 26.681148 0.0006914004 FALSE TRUE
## COMO_DM_INS 1.219300 0.0006914004 FALSE FALSE
## COMO_DM_ORAL 7.195025 0.0006914004 FALSE FALSE
## COMO_DM_NOMEDS 12.391417 0.0006914004 FALSE FALSE
## COMO_ALCHO 72.661319 0.0006914004 FALSE TRUE
## COMO_DRUG 95.422667 0.0006914004 FALSE TRUE
## COMO_INAMB 12.177296 0.0006914004 FALSE FALSE
## COMO_INTRANS 24.412281 0.0006914004 FALSE TRUE
## COMO_NEEDASST 5.786505 0.0006914004 FALSE FALSE
## COMO_INST_OTH 140.382209 0.0006914004 FALSE TRUE
## COMO_INST 9.690269 0.0006914004 FALSE FALSE
## COMO_INST_AL 115.593309 0.0006914004 FALSE TRUE
## COMO_INST_NURS 11.697217 0.0006914004 FALSE FALSE
## PATTXOP_UNSUTAGE 25.208934 0.0006914004 FALSE TRUE
## PATTXOP_PHYSUNFIT 239.455528 0.0006914004 FALSE TRUE
## PATTXOP_MEDUNFIT 20.117535 0.0006914004 FALSE TRUE
## FERRITIN 1.009615 7.5760194698 FALSE FALSE
## HGB 1.029770 0.6675470498 FALSE FALSE
## IRON_SAT_PERCENT 1.010322 0.3588367880 FALSE FALSE
## ALBUMIN 1.008190 0.4632382427 FALSE FALSE
## CALCIUM_CORRECTED 1.003538 0.4155316177 FALSE FALSE
## CALCIUM_UNCORRECTED 1.017154 0.4075805136 FALSE FALSE
## PHOSPHORUS 1.009131 0.6544104429 FALSE FALSE
## HEMOSESSIONS_1year 42.076155 0.0024199013 FALSE TRUE
## HD_KTV 1.053104 1.3696641177 FALSE FALSE
## CLM_FROM_3year_num 2.058270 0.0283474149 FALSE FALSE
## ICU_DAYS_3year_num 12.832061 0.7003885670 FALSE FALSE
## time_to_death_1year 1202.969849 0.1261805661 FALSE TRUE
## time_to_death_1year_status 4.786286 0.0006914004 FALSE FALSE
## time_to_death_3year_status 1.298331 0.0006914004 FALSE FALSE
## ICU_DAYS_1year_cat 2.819072 0.0006914004 FALSE FALSE
## CLM_FROM_1year_cat 1.078523 0.0006914004 FALSE FALSE
## time_to_death_1year_month 1202.969849 0.1261805661 FALSE TRUE
nz <- nearZeroVar(training)
nz[1:(length(nz) - 5)]
## [1] 16 20 21 23 25 27 29
# names(training)[nz[1:(length(nz) - 5)]]
training_no_zero <- training[,-nz[1:(length(nz) - 3)]]
##################### CHECK colinearity
library(corrplot)
## corrplot 0.95 loaded
descrCor <-cor( training_no_zero %>% select(which(sapply(training_no_zero, is.numeric))))
highlyCorDescr <- findCorrelation(descrCor,cutoff = .7,names = T)
training_no_zero_no_co <- training_no_zero
################### Centering and Scaling
preProcValues_training <- preProcess(training_no_zero_no_co %>% select(names(training_no_zero_no_co),-time_to_death_1year), method = c("center", "scale"))
training_no_zero_no_co_st <- predict(preProcValues_training,training_no_zero_no_co)
preProcValues_testing <- preProcess(testing %>% select(names(training_no_zero_no_co_st),-time_to_death_1year), method = c("center", "scale"))
testing_no_zero_no_co_st <- predict(preProcValues_testing,testing)
##################### data preprocess
training_no_zero_no_co_st_1year <- training_no_zero_no_co_st[ , !grepl("3year", names(training_no_zero_no_co_st))]
testing_no_zero_no_co_st_1year <- testing_no_zero_no_co_st[ , !grepl("3year", names(testing_no_zero_no_co_st))]
levels(training_no_zero_no_co_st_1year$time_to_death_1year_status) <- c("alive", "died")
dummies <- dummyVars(time_to_death_1year_status ~ ., data = training_no_zero_no_co_st_1year) # Using caret to create dummy variables
training_no_zero_no_co_st_1year_dummies <- as.data.frame(predict(dummies, newdata = training_no_zero_no_co_st_1year))
## Warning in model.frame.default(Terms, newdata, na.action = na.action, xlev =
## object$lvls): variable 'time_to_death_1year_status' is not a factor
training_no_zero_no_co_st_1year_dummies$time_to_death_1year_status <- training_no_zero_no_co_st_1year$time_to_death_1year_status
###### testing
levels(testing_no_zero_no_co_st_1year$time_to_death_1year_status) <- c("alive", "died")
dummies_testing <- dummyVars(time_to_death_1year_status ~ ., data = testing_no_zero_no_co_st_1year) # Using caret to create dummy variables
testing_no_zero_no_co_st_1year_dummies <- as.data.frame(predict(dummies_testing, newdata = testing_no_zero_no_co_st_1year))
## Warning in model.frame.default(Terms, newdata, na.action = na.action, xlev =
## object$lvls): variable 'time_to_death_1year_status' is not a factor
testing_no_zero_no_co_st_1year_dummies$time_to_death_1year_status <- testing_no_zero_no_co_st_1year$time_to_death_1year_status
Model1 : age sex_cat
## Area under the curve: 0.6686
## Confusion Matrix and Statistics
##
## Reference
## Prediction alive died
## alive 41673 5846
## died 18146 6652
##
## Accuracy : 0.6682
## 95% CI : (0.6648, 0.6717)
## No Information Rate : 0.8272
## P-Value [Acc > NIR] : 1
##
## Kappa : 0.1648
##
## Mcnemar's Test P-Value : <2e-16
##
## Sensitivity : 0.53225
## Specificity : 0.69665
## Pos Pred Value : 0.26825
## Neg Pred Value : 0.87698
## Prevalence : 0.17282
## Detection Rate : 0.09198
## Detection Prevalence : 0.34291
## Balanced Accuracy : 0.61445
##
## 'Positive' Class : died
##
##
## Call:
## NULL
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.721799 0.008075 -213.216 < 2e-16 ***
## age 0.657208 0.005948 110.491 < 2e-16 ***
## sex_catMale 0.044462 0.010191 4.363 1.28e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 266319 on 289267 degrees of freedom
## Residual deviance: 252169 on 289265 degrees of freedom
## AIC: 252175
##
## Number of Fisher Scoring iterations: 5
Characteristic |
OR |
95% CI |
p-value |
age |
1.93 |
1.91, 1.95 |
<0.001 |
sex_catMale |
1.05 |
1.02, 1.07 |
<0.001 |
Model2 : age sex_cat ALBUMIN
## Area under the curve: 0.7781
##
## Call:
## NULL
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.021156 0.009084 -222.50 <2e-16 ***
## age 0.646368 0.006270 103.09 <2e-16 ***
## sex_catMale 0.165173 0.010947 15.09 <2e-16 ***
## ALBUMIN -0.885629 0.005455 -162.34 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 266319 on 289267 degrees of freedom
## Residual deviance: 221723 on 289264 degrees of freedom
## AIC: 221731
##
## Number of Fisher Scoring iterations: 5
Characteristic |
OR |
95% CI |
p-value |
age |
1.91 |
1.89, 1.93 |
<0.001 |
sex_catMale |
1.18 |
1.15, 1.21 |
<0.001 |
ALBUMIN |
0.41 |
0.41, 0.42 |
<0.001 |
Model_3 : age sex_cat ALBUMIN COMO_CHF
## Area under the curve: 0.783
##
## Call:
## NULL
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.190874 0.010184 -215.13 <2e-16 ***
## age 0.624261 0.006318 98.80 <2e-16 ***
## sex_catMale 0.168705 0.010987 15.36 <2e-16 ***
## ALBUMIN -0.882142 0.005479 -161.00 <2e-16 ***
## COMO_CHFY 0.454742 0.011042 41.19 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 266319 on 289267 degrees of freedom
## Residual deviance: 220046 on 289263 degrees of freedom
## AIC: 220056
##
## Number of Fisher Scoring iterations: 5
Characteristic |
OR |
95% CI |
p-value |
age |
1.87 |
1.84, 1.89 |
<0.001 |
sex_catMale |
1.18 |
1.16, 1.21 |
<0.001 |
ALBUMIN |
0.41 |
0.41, 0.42 |
<0.001 |
COMO_CHFY |
1.58 |
1.54, 1.61 |
<0.001 |
model_4 : age sex_cat ALBUMIN COMO_CHF COMO_DM_INS
## Area under the curve: 0.7832
##
## Call:
## NULL
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.161257 0.011356 -190.32 < 2e-16 ***
## age 0.617511 0.006414 96.28 < 2e-16 ***
## sex_catMale 0.166359 0.010996 15.13 < 2e-16 ***
## ALBUMIN -0.883798 0.005487 -161.07 < 2e-16 ***
## COMO_CHFY 0.461541 0.011107 41.55 < 2e-16 ***
## COMO_DM_INSY -0.064885 0.011169 -5.81 6.26e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 266319 on 289267 degrees of freedom
## Residual deviance: 220012 on 289262 degrees of freedom
## AIC: 220024
##
## Number of Fisher Scoring iterations: 5
Characteristic |
OR |
95% CI |
p-value |
age |
1.85 |
1.83, 1.88 |
<0.001 |
sex_catMale |
1.18 |
1.16, 1.21 |
<0.001 |
ALBUMIN |
0.41 |
0.41, 0.42 |
<0.001 |
COMO_CHFY |
1.59 |
1.55, 1.62 |
<0.001 |
COMO_DM_INSY |
0.94 |
0.92, 0.96 |
<0.001 |
model_5 : age sex_cat ALBUMIN COMO_CHF COMO_DM_INS COMO_HTN
## Area under the curve: 0.7839
##
## Call:
## NULL
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.907899 0.017931 -106.404 < 2e-16 ***
## age 0.619979 0.006422 96.546 < 2e-16 ***
## sex_catMale 0.161899 0.011005 14.711 < 2e-16 ***
## ALBUMIN -0.879503 0.005492 -160.156 < 2e-16 ***
## COMO_CHFY 0.463878 0.011117 41.727 < 2e-16 ***
## COMO_DM_INSY -0.059215 0.011179 -5.297 1.18e-07 ***
## COMO_HTNY -0.289558 0.016070 -18.018 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 266319 on 289267 degrees of freedom
## Residual deviance: 219697 on 289261 degrees of freedom
## AIC: 219711
##
## Number of Fisher Scoring iterations: 5
Characteristic |
OR |
95% CI |
p-value |
age |
1.86 |
1.84, 1.88 |
<0.001 |
sex_catMale |
1.18 |
1.15, 1.20 |
<0.001 |
ALBUMIN |
0.41 |
0.41, 0.42 |
<0.001 |
COMO_CHFY |
1.59 |
1.56, 1.63 |
<0.001 |
COMO_DM_INSY |
0.94 |
0.92, 0.96 |
<0.001 |
COMO_HTNY |
0.75 |
0.73, 0.77 |
<0.001 |
model_6 : age sex_cat ALBUMIN COMO_CHF COMO_DM_INS COMO_HTN
CLM_FROM_1year_cat
## Area under the curve: 0.8056
##
## Call:
## NULL
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.994173 0.018289 -109.04 < 2e-16 ***
## age 0.595808 0.006495 91.73 < 2e-16 ***
## sex_catMale 0.188199 0.011163 16.86 < 2e-16 ***
## ALBUMIN -0.814854 0.005574 -146.19 < 2e-16 ***
## COMO_CHFY 0.417570 0.011282 37.01 < 2e-16 ***
## COMO_DM_INSY -0.071434 0.011339 -6.30 2.98e-10 ***
## COMO_HTNY -0.274014 0.016297 -16.81 < 2e-16 ***
## CLM_FROM_1year_cat 0.462243 0.005877 78.66 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 266319 on 289267 degrees of freedom
## Residual deviance: 213184 on 289260 degrees of freedom
## AIC: 213200
##
## Number of Fisher Scoring iterations: 5
Characteristic |
OR |
95% CI |
p-value |
age |
1.81 |
1.79, 1.84 |
<0.001 |
sex_catMale |
1.21 |
1.18, 1.23 |
<0.001 |
ALBUMIN |
0.44 |
0.44, 0.45 |
<0.001 |
COMO_CHFY |
1.52 |
1.49, 1.55 |
<0.001 |
COMO_DM_INSY |
0.93 |
0.91, 0.95 |
<0.001 |
COMO_HTNY |
0.76 |
0.74, 0.79 |
<0.001 |
CLM_FROM_1year_cat |
1.59 |
1.57, 1.61 |
<0.001 |
model_7 : age ALBUMIN COMO_CHF
## Area under the curve: 0.7819
##
## Call:
## NULL
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.093260 0.007819 -267.71 <2e-16 ***
## age 0.622924 0.006315 98.64 <2e-16 ***
## ALBUMIN -0.877384 0.005467 -160.50 <2e-16 ***
## COMO_CHFY 0.453278 0.011033 41.08 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 266319 on 289267 degrees of freedom
## Residual deviance: 220283 on 289264 degrees of freedom
## AIC: 220291
##
## Number of Fisher Scoring iterations: 5
Characteristic |
OR |
95% CI |
p-value |
age |
1.86 |
1.84, 1.89 |
<0.001 |
ALBUMIN |
0.42 |
0.41, 0.42 |
<0.001 |
COMO_CHFY |
1.57 |
1.54, 1.61 |
<0.001 |
model_8 : age ALBUMIN COMO_CHF IRON_SAT_PERCENT
## Area under the curve: 0.7944
##
## Call:
## NULL
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.121043 0.007962 -266.38 <2e-16 ***
## age 0.644748 0.006398 100.77 <2e-16 ***
## ALBUMIN -0.859458 0.005519 -155.74 <2e-16 ***
## COMO_CHFY 0.404469 0.011155 36.26 <2e-16 ***
## IRON_SAT_PERCENT -0.345400 0.005589 -61.80 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 266319 on 289267 degrees of freedom
## Residual deviance: 216292 on 289263 degrees of freedom
## AIC: 216302
##
## Number of Fisher Scoring iterations: 5
Characteristic |
OR |
95% CI |
p-value |
age |
1.91 |
1.88, 1.93 |
<0.001 |
ALBUMIN |
0.42 |
0.42, 0.43 |
<0.001 |
COMO_CHFY |
1.50 |
1.47, 1.53 |
<0.001 |
IRON_SAT_PERCENT |
0.71 |
0.70, 0.72 |
<0.001 |
model_9 : age ALBUMIN COMO_CHF IRON_SAT_PERCENT HGB
## Area under the curve: 0.8008
##
## Call:
## NULL
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.146852 0.008062 -266.30 <2e-16 ***
## age 0.660195 0.006459 102.21 <2e-16 ***
## ALBUMIN -0.759916 0.005785 -131.37 <2e-16 ***
## COMO_CHFY 0.423171 0.011254 37.60 <2e-16 ***
## IRON_SAT_PERCENT -0.292260 0.005645 -51.77 <2e-16 ***
## HGB -0.311487 0.005761 -54.06 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 266319 on 289267 degrees of freedom
## Residual deviance: 213317 on 289262 degrees of freedom
## AIC: 213329
##
## Number of Fisher Scoring iterations: 5
Characteristic |
OR |
95% CI |
p-value |
age |
1.94 |
1.91, 1.96 |
<0.001 |
ALBUMIN |
0.47 |
0.46, 0.47 |
<0.001 |
COMO_CHFY |
1.53 |
1.49, 1.56 |
<0.001 |
IRON_SAT_PERCENT |
0.75 |
0.74, 0.75 |
<0.001 |
HGB |
0.73 |
0.72, 0.74 |
<0.001 |
model_10 : age ALBUMIN COMO_CHF IRON_SAT_PERCENT
## Area under the curve: 0.8132
##
## Call:
## NULL
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.180200 0.008258 -264.02 <2e-16 ***
## age 0.620832 0.006460 96.10 <2e-16 ***
## ALBUMIN -0.799336 0.005594 -142.89 <2e-16 ***
## COMO_CHFY 0.362263 0.011306 32.04 <2e-16 ***
## IRON_SAT_PERCENT -0.320349 0.005643 -56.77 <2e-16 ***
## CLM_FROM_1year_cat 0.440702 0.005911 74.56 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 266319 on 289267 degrees of freedom
## Residual deviance: 210466 on 289262 degrees of freedom
## AIC: 210478
##
## Number of Fisher Scoring iterations: 5
Characteristic |
OR |
95% CI |
p-value |
age |
1.86 |
1.84, 1.88 |
<0.001 |
ALBUMIN |
0.45 |
0.44, 0.45 |
<0.001 |
COMO_CHFY |
1.44 |
1.41, 1.47 |
<0.001 |
IRON_SAT_PERCENT |
0.73 |
0.72, 0.73 |
<0.001 |
CLM_FROM_1year_cat |
1.55 |
1.54, 1.57 |
<0.001 |
model_11 : age,ALBUMIN
## Area under the curve: 0.777
##
## Call:
## NULL
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.926110 0.006396 -301.1 <2e-16 ***
## age 0.644985 0.006267 102.9 <2e-16 ***
## ALBUMIN -0.880964 0.005443 -161.9 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 266319 on 289267 degrees of freedom
## Residual deviance: 221952 on 289265 degrees of freedom
## AIC: 221958
##
## Number of Fisher Scoring iterations: 5
Characteristic |
OR |
95% CI |
p-value |
age |
1.91 |
1.88, 1.93 |
<0.001 |
ALBUMIN |
0.41 |
0.41, 0.42 |
<0.001 |
model_12 : age ALBUMIN IRON_SAT_PERCENT
## Area under the curve: 0.791
##
## Call:
## NULL
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.973510 0.006598 -299.12 <2e-16 ***
## age 0.665406 0.006354 104.73 <2e-16 ***
## ALBUMIN -0.861807 0.005499 -156.72 <2e-16 ***
## IRON_SAT_PERCENT -0.359041 0.005568 -64.48 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 266319 on 289267 degrees of freedom
## Residual deviance: 217592 on 289264 degrees of freedom
## AIC: 217600
##
## Number of Fisher Scoring iterations: 5
Characteristic |
OR |
95% CI |
p-value |
age |
1.95 |
1.92, 1.97 |
<0.001 |
ALBUMIN |
0.42 |
0.42, 0.43 |
<0.001 |
IRON_SAT_PERCENT |
0.70 |
0.69, 0.71 |
<0.001 |
model_13 : age ALBUMIN IRON_SAT_PERCENT HGB
## Area under the curve: 0.7972
##
## Call:
## NULL
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.991916 0.006667 -298.76 <2e-16 ***
## age 0.681436 0.006414 106.25 <2e-16 ***
## ALBUMIN -0.764150 0.005763 -132.59 <2e-16 ***
## IRON_SAT_PERCENT -0.307330 0.005622 -54.66 <2e-16 ***
## HGB -0.305663 0.005747 -53.19 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 266319 on 289267 degrees of freedom
## Residual deviance: 214716 on 289263 degrees of freedom
## AIC: 214726
##
## Number of Fisher Scoring iterations: 5
Characteristic |
OR |
95% CI |
p-value |
age |
1.98 |
1.95, 2.00 |
<0.001 |
ALBUMIN |
0.47 |
0.46, 0.47 |
<0.001 |
IRON_SAT_PERCENT |
0.74 |
0.73, 0.74 |
<0.001 |
HGB |
0.74 |
0.73, 0.74 |
<0.001 |
model_14 : age ALBUMIN IRON_SAT_PERCENT HGB CLM_FROM_1year_cat
## Area under the curve: 0.8156
##
## Call:
## NULL
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.064292 0.007017 -294.18 <2e-16 ***
## age 0.655180 0.006473 101.21 <2e-16 ***
## ALBUMIN -0.714410 0.005832 -122.51 <2e-16 ***
## IRON_SAT_PERCENT -0.287782 0.005672 -50.73 <2e-16 ***
## HGB -0.274668 0.005782 -47.50 <2e-16 ***
## CLM_FROM_1year_cat 0.431525 0.005938 72.67 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 266319 on 289267 degrees of freedom
## Residual deviance: 209195 on 289262 degrees of freedom
## AIC: 209207
##
## Number of Fisher Scoring iterations: 5
Characteristic |
OR |
95% CI |
p-value |
age |
1.93 |
1.90, 1.95 |
<0.001 |
ALBUMIN |
0.49 |
0.48, 0.50 |
<0.001 |
IRON_SAT_PERCENT |
0.75 |
0.74, 0.76 |
<0.001 |
HGB |
0.76 |
0.75, 0.77 |
<0.001 |
CLM_FROM_1year_cat |
1.54 |
1.52, 1.56 |
<0.001 |
model_15 : age ALBUMIN IRON_SAT_PERCENT HGB CLM_FROM_1year_cat
race_cat_4
## Area under the curve: 0.818
##
## Call:
## NULL
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.508537 0.035075 -71.518 < 2e-16 ***
## age 0.634762 0.006549 96.931 < 2e-16 ***
## ALBUMIN -0.711977 0.005846 -121.792 < 2e-16 ***
## IRON_SAT_PERCENT -0.282247 0.005681 -49.686 < 2e-16 ***
## HGB -0.286745 0.005817 -49.292 < 2e-16 ***
## CLM_FROM_1year_cat 0.424845 0.005953 71.368 < 2e-16 ***
## race_cat_4Black 0.206247 0.036868 5.594 2.22e-08 ***
## race_cat_4Other -0.037393 0.057833 -0.647 0.518
## race_cat_4White 0.558290 0.035312 15.810 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 266319 on 289267 degrees of freedom
## Residual deviance: 208205 on 289259 degrees of freedom
## AIC: 208223
##
## Number of Fisher Scoring iterations: 5
Characteristic |
OR |
95% CI |
p-value |
age |
1.89 |
1.86, 1.91 |
<0.001 |
ALBUMIN |
0.49 |
0.49, 0.50 |
<0.001 |
IRON_SAT_PERCENT |
0.75 |
0.75, 0.76 |
<0.001 |
HGB |
0.75 |
0.74, 0.76 |
<0.001 |
CLM_FROM_1year_cat |
1.53 |
1.51, 1.55 |
<0.001 |
race_cat_4Black |
1.23 |
1.14, 1.32 |
<0.001 |
race_cat_4Other |
0.96 |
0.86, 1.08 |
0.5 |
race_cat_4White |
1.75 |
1.63, 1.87 |
<0.001 |
model_16 : age ALBUMIN IRON_SAT_PERCENT HGB CLM_FROM_1year_cat
race_cat_4 state_cat
## Area under the curve: 0.818
##
## Call:
## NULL
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.420995 0.037655 -64.295 < 2e-16 ***
## age 0.637712 0.006582 96.888 < 2e-16 ***
## ALBUMIN -0.712204 0.005848 -121.791 < 2e-16 ***
## IRON_SAT_PERCENT -0.282566 0.005683 -49.725 < 2e-16 ***
## HGB -0.286541 0.005829 -49.158 < 2e-16 ***
## CLM_FROM_1year_cat 0.423348 0.005962 71.005 < 2e-16 ***
## race_cat_4Black 0.162747 0.037702 4.317 1.58e-05 ***
## race_cat_4Other -0.050267 0.057882 -0.868 0.3852
## race_cat_4White 0.525975 0.035798 14.693 < 2e-16 ***
## state_catFIPSNE -0.131690 0.017992 -7.320 2.49e-13 ***
## state_catFIPSS -0.029338 0.014646 -2.003 0.0452 *
## state_catFIPSW -0.108808 0.018206 -5.977 2.28e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 266319 on 289267 degrees of freedom
## Residual deviance: 208128 on 289256 degrees of freedom
## AIC: 208152
##
## Number of Fisher Scoring iterations: 5
Characteristic |
OR |
95% CI |
p-value |
age |
1.89 |
1.87, 1.92 |
<0.001 |
ALBUMIN |
0.49 |
0.48, 0.50 |
<0.001 |
IRON_SAT_PERCENT |
0.75 |
0.75, 0.76 |
<0.001 |
HGB |
0.75 |
0.74, 0.76 |
<0.001 |
CLM_FROM_1year_cat |
1.53 |
1.51, 1.55 |
<0.001 |
race_cat_4Black |
1.18 |
1.09, 1.27 |
<0.001 |
race_cat_4Other |
0.95 |
0.85, 1.06 |
0.4 |
race_cat_4White |
1.69 |
1.58, 1.82 |
<0.001 |
state_catFIPSNE |
0.88 |
0.85, 0.91 |
<0.001 |
state_catFIPSS |
0.97 |
0.94, 1.00 |
0.045 |
state_catFIPSW |
0.90 |
0.87, 0.93 |
<0.001 |
model_17 : age ALBUMIN IRON_SAT_PERCENT HGB CLM_FROM_1year_cat
CALCIUM_UNCORRECTED
## Area under the curve: 0.8166
##
## Call:
## NULL
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.068786 0.007037 -293.98 <2e-16 ***
## age 0.641270 0.006510 98.50 <2e-16 ***
## ALBUMIN -0.777355 0.006559 -118.51 <2e-16 ***
## IRON_SAT_PERCENT -0.286026 0.005680 -50.35 <2e-16 ***
## HGB -0.278934 0.005788 -48.19 <2e-16 ***
## CLM_FROM_1year_cat 0.429547 0.005944 72.27 <2e-16 ***
## CALCIUM_UNCORRECTED 0.135079 0.006227 21.69 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 266319 on 289267 degrees of freedom
## Residual deviance: 208722 on 289261 degrees of freedom
## AIC: 208736
##
## Number of Fisher Scoring iterations: 5
Characteristic |
OR |
95% CI |
p-value |
age |
1.90 |
1.87, 1.92 |
<0.001 |
ALBUMIN |
0.46 |
0.45, 0.47 |
<0.001 |
IRON_SAT_PERCENT |
0.75 |
0.74, 0.76 |
<0.001 |
HGB |
0.76 |
0.75, 0.77 |
<0.001 |
CLM_FROM_1year_cat |
1.54 |
1.52, 1.55 |
<0.001 |
CALCIUM_UNCORRECTED |
1.14 |
1.13, 1.16 |
<0.001 |
model_18 : age ALBUMIN IRON_SAT_PERCENT HGB CLM_FROM_1year_cat
CALCIUM_UNCORRECTED FERRITIN
## Area under the curve: 0.8167
##
## Call:
## NULL
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.069259 0.007039 -293.96 <2e-16 ***
## age 0.635825 0.006525 97.45 <2e-16 ***
## ALBUMIN -0.768787 0.006587 -116.72 <2e-16 ***
## IRON_SAT_PERCENT -0.306653 0.005885 -52.10 <2e-16 ***
## HGB -0.264919 0.005873 -45.11 <2e-16 ***
## CLM_FROM_1year_cat 0.427847 0.005948 71.93 <2e-16 ***
## CALCIUM_UNCORRECTED 0.126133 0.006264 20.14 <2e-16 ***
## FERRITIN 0.073668 0.005282 13.95 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 266319 on 289267 degrees of freedom
## Residual deviance: 208529 on 289260 degrees of freedom
## AIC: 208545
##
## Number of Fisher Scoring iterations: 5
Characteristic |
OR |
95% CI |
p-value |
age |
1.89 |
1.86, 1.91 |
<0.001 |
ALBUMIN |
0.46 |
0.46, 0.47 |
<0.001 |
IRON_SAT_PERCENT |
0.74 |
0.73, 0.74 |
<0.001 |
HGB |
0.77 |
0.76, 0.78 |
<0.001 |
CLM_FROM_1year_cat |
1.53 |
1.52, 1.55 |
<0.001 |
CALCIUM_UNCORRECTED |
1.13 |
1.12, 1.15 |
<0.001 |
FERRITIN |
1.08 |
1.07, 1.09 |
<0.001 |
model_19 : age ALBUMIN IRON_SAT_PERCENT HGB CLM_FROM_1year_cat
CALCIUM_UNCORRECTED FERRITIN PHOSPHORUS
## Area under the curve: 0.8168
##
## Call:
## NULL
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.068959 0.007039 -293.943 < 2e-16 ***
## age 0.629128 0.006731 93.469 < 2e-16 ***
## ALBUMIN -0.763495 0.006715 -113.706 < 2e-16 ***
## IRON_SAT_PERCENT -0.306566 0.005886 -52.088 < 2e-16 ***
## HGB -0.264875 0.005872 -45.111 < 2e-16 ***
## CLM_FROM_1year_cat 0.427795 0.005949 71.916 < 2e-16 ***
## CALCIUM_UNCORRECTED 0.123506 0.006303 19.596 < 2e-16 ***
## FERRITIN 0.072153 0.005295 13.627 < 2e-16 ***
## PHOSPHORUS -0.024473 0.006101 -4.012 6.03e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 266319 on 289267 degrees of freedom
## Residual deviance: 208513 on 289259 degrees of freedom
## AIC: 208531
##
## Number of Fisher Scoring iterations: 5
Characteristic |
OR |
95% CI |
p-value |
age |
1.88 |
1.85, 1.90 |
<0.001 |
ALBUMIN |
0.47 |
0.46, 0.47 |
<0.001 |
IRON_SAT_PERCENT |
0.74 |
0.73, 0.74 |
<0.001 |
HGB |
0.77 |
0.76, 0.78 |
<0.001 |
CLM_FROM_1year_cat |
1.53 |
1.52, 1.55 |
<0.001 |
CALCIUM_UNCORRECTED |
1.13 |
1.12, 1.15 |
<0.001 |
FERRITIN |
1.07 |
1.06, 1.09 |
<0.001 |
PHOSPHORUS |
0.98 |
0.96, 0.99 |
<0.001 |