Задание 1.

Установить пакет CARET, выполнить команду names(getModelInfo()), ознакомиться со списком доступных методов выбора признаков. Выполните графический разведочный анализ данных с использование функции featurePlot() для набора данных из справочного файла пакета CARET:

x <- matrix(rnorm(50*5),ncol=5)

y <- factor(rep(c(“A”, “B”), 25))

Сохранить полученные графики в *.jpg файлы. Сделать выводы.

Импортируем caret и выводим доступные методы.

library(caret)
## Warning: пакет 'caret' был собран под R версии 4.4.3
## Загрузка требуемого пакета: ggplot2
## Загрузка требуемого пакета: lattice
names(getModelInfo())
##   [1] "ada"                 "AdaBag"              "AdaBoost.M1"        
##   [4] "adaboost"            "amdai"               "ANFIS"              
##   [7] "avNNet"              "awnb"                "awtan"              
##  [10] "bag"                 "bagEarth"            "bagEarthGCV"        
##  [13] "bagFDA"              "bagFDAGCV"           "bam"                
##  [16] "bartMachine"         "bayesglm"            "binda"              
##  [19] "blackboost"          "blasso"              "blassoAveraged"     
##  [22] "bridge"              "brnn"                "BstLm"              
##  [25] "bstSm"               "bstTree"             "C5.0"               
##  [28] "C5.0Cost"            "C5.0Rules"           "C5.0Tree"           
##  [31] "cforest"             "chaid"               "CSimca"             
##  [34] "ctree"               "ctree2"              "cubist"             
##  [37] "dda"                 "deepboost"           "DENFIS"             
##  [40] "dnn"                 "dwdLinear"           "dwdPoly"            
##  [43] "dwdRadial"           "earth"               "elm"                
##  [46] "enet"                "evtree"              "extraTrees"         
##  [49] "fda"                 "FH.GBML"             "FIR.DM"             
##  [52] "foba"                "FRBCS.CHI"           "FRBCS.W"            
##  [55] "FS.HGD"              "gam"                 "gamboost"           
##  [58] "gamLoess"            "gamSpline"           "gaussprLinear"      
##  [61] "gaussprPoly"         "gaussprRadial"       "gbm_h2o"            
##  [64] "gbm"                 "gcvEarth"            "GFS.FR.MOGUL"       
##  [67] "GFS.LT.RS"           "GFS.THRIFT"          "glm.nb"             
##  [70] "glm"                 "glmboost"            "glmnet_h2o"         
##  [73] "glmnet"              "glmStepAIC"          "gpls"               
##  [76] "hda"                 "hdda"                "hdrda"              
##  [79] "HYFIS"               "icr"                 "J48"                
##  [82] "JRip"                "kernelpls"           "kknn"               
##  [85] "knn"                 "krlsPoly"            "krlsRadial"         
##  [88] "lars"                "lars2"               "lasso"              
##  [91] "lda"                 "lda2"                "leapBackward"       
##  [94] "leapForward"         "leapSeq"             "Linda"              
##  [97] "lm"                  "lmStepAIC"           "LMT"                
## [100] "loclda"              "logicBag"            "LogitBoost"         
## [103] "logreg"              "lssvmLinear"         "lssvmPoly"          
## [106] "lssvmRadial"         "lvq"                 "M5"                 
## [109] "M5Rules"             "manb"                "mda"                
## [112] "Mlda"                "mlp"                 "mlpKerasDecay"      
## [115] "mlpKerasDecayCost"   "mlpKerasDropout"     "mlpKerasDropoutCost"
## [118] "mlpML"               "mlpSGD"              "mlpWeightDecay"     
## [121] "mlpWeightDecayML"    "monmlp"              "msaenet"            
## [124] "multinom"            "mxnet"               "mxnetAdam"          
## [127] "naive_bayes"         "nb"                  "nbDiscrete"         
## [130] "nbSearch"            "neuralnet"           "nnet"               
## [133] "nnls"                "nodeHarvest"         "null"               
## [136] "OneR"                "ordinalNet"          "ordinalRF"          
## [139] "ORFlog"              "ORFpls"              "ORFridge"           
## [142] "ORFsvm"              "ownn"                "pam"                
## [145] "parRF"               "PART"                "partDSA"            
## [148] "pcaNNet"             "pcr"                 "pda"                
## [151] "pda2"                "penalized"           "PenalizedLDA"       
## [154] "plr"                 "pls"                 "plsRglm"            
## [157] "polr"                "ppr"                 "pre"                
## [160] "PRIM"                "protoclass"          "qda"                
## [163] "QdaCov"              "qrf"                 "qrnn"               
## [166] "randomGLM"           "ranger"              "rbf"                
## [169] "rbfDDA"              "Rborist"             "rda"                
## [172] "regLogistic"         "relaxo"              "rf"                 
## [175] "rFerns"              "RFlda"               "rfRules"            
## [178] "ridge"               "rlda"                "rlm"                
## [181] "rmda"                "rocc"                "rotationForest"     
## [184] "rotationForestCp"    "rpart"               "rpart1SE"           
## [187] "rpart2"              "rpartCost"           "rpartScore"         
## [190] "rqlasso"             "rqnc"                "RRF"                
## [193] "RRFglobal"           "rrlda"               "RSimca"             
## [196] "rvmLinear"           "rvmPoly"             "rvmRadial"          
## [199] "SBC"                 "sda"                 "sdwd"               
## [202] "simpls"              "SLAVE"               "slda"               
## [205] "smda"                "snn"                 "sparseLDA"          
## [208] "spikeslab"           "spls"                "stepLDA"            
## [211] "stepQDA"             "superpc"             "svmBoundrangeString"
## [214] "svmExpoString"       "svmLinear"           "svmLinear2"         
## [217] "svmLinear3"          "svmLinearWeights"    "svmLinearWeights2"  
## [220] "svmPoly"             "svmRadial"           "svmRadialCost"      
## [223] "svmRadialSigma"      "svmRadialWeights"    "svmSpectrumString"  
## [226] "tan"                 "tanSearch"           "treebag"            
## [229] "vbmpRadial"          "vglmAdjCat"          "vglmContRatio"      
## [232] "vglmCumulative"      "widekernelpls"       "WM"                 
## [235] "wsrf"                "xgbDART"             "xgbLinear"          
## [238] "xgbTree"             "xyf"

Задаем наборы данных и создаем графики на их основе.

x <- matrix(rnorm(50*5), ncol=5)
y <- factor(rep(c("A", "B"), 25))
featurePlot(x = x, y = y, plot = "pairs")

featurePlot(x = x, y = y, plot = "density", layout = c(1, 5))

featurePlot(x = x, y = y, plot = "box", layout = c(5, 1))

jpeg("featurePlot_pairs.jpg")
featurePlot(x = x, y = y, plot = "pairs")
dev.off()
## png 
##   2
jpeg("featurePlot_density.jpg")
featurePlot(x = x, y = y, plot = "density")
dev.off()
## png 
##   2
jpeg("featurePlot_box.jpg")
featurePlot(x = x, y = y, plot = "box")
dev.off()
## png 
##   2

Вывод: исходя из визуализации данных видно, что данные случайны и большая часть значений находится в диапозоне от -1 до 1. Медианные значения класса А зачастую выше значений класса B в рамках одного Feature.

Задание 2.

С использованием функций из пакета Fselector определить важность признаков для решения задачи классификации. Использовать набор data(iris). Сделать выводы.

library(FSelector)
## Warning: пакет 'FSelector' был собран под R версии 4.4.3
data(iris)
weights <- information.gain(Species ~ ., data = iris)
print(weights)
##              attr_importance
## Sepal.Length       0.4521286
## Sepal.Width        0.2672750
## Petal.Length       0.9402853
## Petal.Width        0.9554360

Вывод: из данных важности аттрибутов можно сделать вывод, что наибольшей важностью обладют атрибуты ширины и длины Petal, в то время кака Sepal обладает нименьшей важностью для классификации, особенно ширина.

Задание 3

С использованием функции discretize() из пакета arules выполните преобразование непрерывной переменной в категориальную различными методами: «interval» (равная ширина интервала), «frequency» (равная частота), «cluster» (кластеризация) и «fixed» (категории задают границы интервалов). Используйте набор данных iris. Сделайте выводы

library(arules)
## Warning: пакет 'arules' был собран под R версии 4.4.3
## Загрузка требуемого пакета: Matrix
## 
## Присоединяю пакет: 'arules'
## Следующие объекты скрыты от 'package:base':
## 
##     abbreviate, write
iris$Sepal.Length_interval <- discretize(iris$Sepal.Length, method = "interval", breaks = 3)
iris$Sepal.Length_frequency <- discretize(iris$Sepal.Length, method = "frequency", breaks = 3)
iris$Sepal.Length_cluster <- discretize(iris$Sepal.Length, method = "cluster", breaks = 3)
iris$Sepal.Length_fixed <- discretize(iris$Sepal.Length, method = "fixed", breaks = c(-Inf, 5.5, 6.5, Inf))
plot_interval <- ggplot(iris, aes(x = Sepal.Length_interval)) +
geom_bar(fill = "salmon", color = "black") +
labs(title = "Метод: Равная ширина (interval)")
plot_interval

plot_frequency <- ggplot(iris, aes(x = Sepal.Length_frequency)) +
geom_bar(fill = "lightgreen", color = "black") +
labs(title = "Метод: Равная частота (frequency)")
plot_frequency

plot_cluster <- ggplot(iris, aes(x = Sepal.Length_cluster)) +
geom_bar(fill = "gold", color = "black") +
labs(title = "Метод: Кластеризация (cluster)")
plot_cluster

plot_fixed <- ggplot(iris, aes(x = Sepal.Length_fixed)) +
geom_bar(fill = "violet", color = "black") +
labs(title = "Метод: Фиксированные границы (fixed)")
plot_fixed

Вывод: Таким образом можнно сделать вывод, что:

Каждый метод дискретизации имеет место быть для той или иной задачи.

Задание 4

Установите пакет Boruta и проведите выбор признаков для набора данных data(“Ozone”) [4, 5, 6]. Построить график boxplot, сделать выводы. Проверим, какие признаки являются важными для признаков 4, 5 и 6.

library(Boruta)
## Warning: пакет 'Boruta' был собран под R версии 4.4.3
library(mlbench)
## Warning: пакет 'mlbench' был собран под R версии 4.4.3
data("Ozone", package = "mlbench")
ozone_clean <- na.omit(Ozone)
str(ozone_clean)
## 'data.frame':    203 obs. of  13 variables:
##  $ V1 : Factor w/ 12 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ V2 : Factor w/ 31 levels "1","2","3","4",..: 5 6 7 8 9 12 13 14 15 16 ...
##  $ V3 : Factor w/ 7 levels "1","2","3","4",..: 1 2 3 4 5 1 2 3 4 5 ...
##  $ V4 : num  5 6 4 4 6 6 5 4 4 7 ...
##  $ V5 : num  5760 5720 5790 5790 5700 5720 5760 5780 5830 5870 ...
##  $ V6 : num  3 4 6 3 3 3 6 6 3 2 ...
##  $ V7 : num  51 69 19 25 73 44 33 19 19 19 ...
##  $ V8 : num  54 35 45 55 41 51 51 54 58 61 ...
##  $ V9 : num  45.3 49.6 46.4 52.7 48 ...
##  $ V10: num  1450 1568 2631 554 2083 ...
##  $ V11: num  25 15 -33 -28 23 9 -44 -44 -53 -67 ...
##  $ V12: num  57 53.8 54.1 64.8 52.5 ...
##  $ V13: num  60 60 100 250 120 150 40 200 250 200 ...
##  - attr(*, "na.action")= 'omit' Named int [1:163] 1 2 3 4 10 11 17 18 20 24 ...
##   ..- attr(*, "names")= chr [1:163] "1" "2" "3" "4" ...
ozone_clean <- droplevels(ozone_clean)
set.seed(123)
boruta_output <- Boruta(V4 ~ ., data = ozone_clean, doTrace = 2, maxRuns = 100)
##  1. run of importance source...
##  2. run of importance source...
##  3. run of importance source...
##  4. run of importance source...
##  5. run of importance source...
##  6. run of importance source...
##  7. run of importance source...
##  8. run of importance source...
##  9. run of importance source...
##  10. run of importance source...
##  11. run of importance source...
## After 11 iterations, +0.8 secs:
##  confirmed 9 attributes: V1, V10, V11, V12, V13 and 4 more;
##  rejected 2 attributes: V3, V6;
##  still have 1 attribute left.
##  12. run of importance source...
##  13. run of importance source...
##  14. run of importance source...
##  15. run of importance source...
##  16. run of importance source...
##  17. run of importance source...
##  18. run of importance source...
##  19. run of importance source...
##  20. run of importance source...
##  21. run of importance source...
##  22. run of importance source...
##  23. run of importance source...
##  24. run of importance source...
## After 24 iterations, +1.7 secs:
##  rejected 1 attribute: V2;
##  no more attributes left.
print(boruta_output)
## Boruta performed 24 iterations in 1.663278 secs.
##  9 attributes confirmed important: V1, V10, V11, V12, V13 and 4 more;
##  3 attributes confirmed unimportant: V2, V3, V6;
plot(boruta_output)

jpeg("attribute_importance.jpg", width = 1200, height = 800)
plot(boruta_output)
dev.off()
## png 
##   2
boruta_output <- Boruta(V5 ~ ., data = ozone_clean, doTrace = 2, maxRuns = 100)
##  1. run of importance source...
##  2. run of importance source...
##  3. run of importance source...
##  4. run of importance source...
##  5. run of importance source...
##  6. run of importance source...
##  7. run of importance source...
##  8. run of importance source...
##  9. run of importance source...
##  10. run of importance source...
##  11. run of importance source...
## After 11 iterations, +0.78 secs:
##  confirmed 11 attributes: V1, V10, V11, V12, V13 and 6 more;
##  still have 1 attribute left.
##  12. run of importance source...
##  13. run of importance source...
##  14. run of importance source...
##  15. run of importance source...
## After 15 iterations, +1.1 secs:
##  rejected 1 attribute: V3;
##  no more attributes left.
print(boruta_output)
## Boruta performed 15 iterations in 1.063301 secs.
##  11 attributes confirmed important: V1, V10, V11, V12, V13 and 6 more;
##  1 attributes confirmed unimportant: V3;
plot(boruta_output)

jpeg("attribute_importance.jpg", width = 1200, height = 800)
plot(boruta_output)
dev.off()
## png 
##   2
boruta_output <- Boruta(V6 ~ ., data = ozone_clean, doTrace = 2, maxRuns = 100)
##  1. run of importance source...
##  2. run of importance source...
##  3. run of importance source...
##  4. run of importance source...
##  5. run of importance source...
##  6. run of importance source...
##  7. run of importance source...
##  8. run of importance source...
##  9. run of importance source...
##  10. run of importance source...
##  11. run of importance source...
## After 11 iterations, +0.87 secs:
##  confirmed 5 attributes: V1, V11, V5, V7, V9;
##  rejected 2 attributes: V2, V3;
##  still have 5 attributes left.
##  12. run of importance source...
##  13. run of importance source...
##  14. run of importance source...
##  15. run of importance source...
## After 15 iterations, +1.2 secs:
##  confirmed 3 attributes: V10, V12, V4;
##  still have 2 attributes left.
##  16. run of importance source...
##  17. run of importance source...
##  18. run of importance source...
##  19. run of importance source...
##  20. run of importance source...
##  21. run of importance source...
##  22. run of importance source...
##  23. run of importance source...
##  24. run of importance source...
## After 24 iterations, +1.8 secs:
##  rejected 1 attribute: V13;
##  still have 1 attribute left.
##  25. run of importance source...
##  26. run of importance source...
##  27. run of importance source...
##  28. run of importance source...
##  29. run of importance source...
##  30. run of importance source...
##  31. run of importance source...
##  32. run of importance source...
##  33. run of importance source...
##  34. run of importance source...
##  35. run of importance source...
##  36. run of importance source...
##  37. run of importance source...
##  38. run of importance source...
##  39. run of importance source...
##  40. run of importance source...
##  41. run of importance source...
##  42. run of importance source...
##  43. run of importance source...
##  44. run of importance source...
##  45. run of importance source...
##  46. run of importance source...
##  47. run of importance source...
##  48. run of importance source...
##  49. run of importance source...
##  50. run of importance source...
##  51. run of importance source...
##  52. run of importance source...
##  53. run of importance source...
##  54. run of importance source...
##  55. run of importance source...
##  56. run of importance source...
##  57. run of importance source...
##  58. run of importance source...
##  59. run of importance source...
##  60. run of importance source...
##  61. run of importance source...
##  62. run of importance source...
##  63. run of importance source...
##  64. run of importance source...
##  65. run of importance source...
##  66. run of importance source...
##  67. run of importance source...
##  68. run of importance source...
##  69. run of importance source...
##  70. run of importance source...
##  71. run of importance source...
##  72. run of importance source...
##  73. run of importance source...
##  74. run of importance source...
##  75. run of importance source...
##  76. run of importance source...
##  77. run of importance source...
##  78. run of importance source...
##  79. run of importance source...
##  80. run of importance source...
##  81. run of importance source...
##  82. run of importance source...
##  83. run of importance source...
##  84. run of importance source...
##  85. run of importance source...
##  86. run of importance source...
##  87. run of importance source...
##  88. run of importance source...
##  89. run of importance source...
##  90. run of importance source...
##  91. run of importance source...
## After 91 iterations, +6.3 secs:
##  confirmed 1 attribute: V8;
##  no more attributes left.
print(boruta_output)
## Boruta performed 91 iterations in 6.335165 secs.
##  9 attributes confirmed important: V1, V10, V11, V12, V4 and 4 more;
##  3 attributes confirmed unimportant: V13, V2, V3;
plot(boruta_output)

jpeg("attribute_importance.jpg", width = 1200, height = 800)
plot(boruta_output)
dev.off()
## png 
##   2

Вывод: Таким образом можно сделать вывод, что: