## Rows: 882 Columns: 69
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (22): EXPID, PEAKID, SEASON_FACTOR, HOST_FACTOR, ROUTE1, ROUTE2, NATION...
## dbl (17): YEAR, SEASON, HOST, SMTDAYS, TOTDAYS, TERMREASON, HIGHPOINT, CAMP...
## lgl (27): ROUTE3, ROUTE4, SUCCESS1, SUCCESS2, SUCCESS3, SUCCESS4, ASCENT3, ...
## date (3): BCDATE, SMTDATE, TERMDATE
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## Rows: 480 Columns: 29
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (14): PEAKID, PKNAME, PKNAME2, LOCATION, HIMAL_FACTOR, REGION_FACTOR, RE...
## dbl (12): HEIGHTM, HEIGHTF, HIMAL, REGION, TREKYEAR, PHOST, PSTATUS, PEAKMEM...
## lgl (3): OPEN, UNLISTED, TREKKING
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
TidyTuesday Project data for expedition data.
## # A tibble: 882 × 69
## EXPID PEAKID YEAR SEASON SEASON_FACTOR HOST HOST_FACTOR ROUTE1 ROUTE2
## <chr> <chr> <dbl> <dbl> <chr> <dbl> <chr> <chr> <chr>
## 1 EVER20101 EVER 2020 1 Spring 2 China N Col-N… <NA>
## 2 EVER20102 EVER 2020 1 Spring 2 China N Col-N… <NA>
## 3 EVER20103 EVER 2020 1 Spring 2 China N Col-N… <NA>
## 4 AMAD20301 AMAD 2020 3 Autumn 1 Nepal SW Ridge <NA>
## 5 AMAD20302 AMAD 2020 3 Autumn 1 Nepal SW Ridge <NA>
## 6 AMAD20303 AMAD 2020 3 Autumn 1 Nepal SW Ridge <NA>
## 7 AMAD20304 AMAD 2020 3 Autumn 1 Nepal SW Ridge <NA>
## 8 AMAD20305 AMAD 2020 3 Autumn 1 Nepal SW Ridge <NA>
## 9 AMAD20306 AMAD 2020 3 Autumn 1 Nepal SW Ridge <NA>
## 10 AMAD20307 AMAD 2020 3 Autumn 1 Nepal SW Ridge <NA>
## # ℹ 872 more rows
## # ℹ 60 more variables: ROUTE3 <lgl>, ROUTE4 <lgl>, NATION <chr>, LEADERS <chr>,
## # SPONSOR <chr>, SUCCESS1 <lgl>, SUCCESS2 <lgl>, SUCCESS3 <lgl>,
## # SUCCESS4 <lgl>, ASCENT1 <chr>, ASCENT2 <chr>, ASCENT3 <lgl>, ASCENT4 <lgl>,
## # CLAIMED <lgl>, DISPUTED <lgl>, COUNTRIES <chr>, APPROACH <chr>,
## # BCDATE <date>, SMTDATE <date>, SMTTIME <chr>, SMTDAYS <dbl>, TOTDAYS <dbl>,
## # TERMDATE <date>, TERMREASON <dbl>, TERMREASON_FACTOR <chr>, …
TidyTuesday Project data for peak/mountain names.
## # A tibble: 480 × 29
## PEAKID PKNAME PKNAME2 LOCATION HEIGHTM HEIGHTF HIMAL HIMAL_FACTOR REGION
## <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <chr> <dbl>
## 1 AMAD Ama Dablam Amai D… Khumbu … 6814 22356 12 Khumbu 2
## 2 AMPG Amphu Gyab… Amphu … Khumbu … 5630 18471 12 Khumbu 2
## 3 ANN1 Annapurna I <NA> Annapur… 8091 26545 1 Annapurna 5
## 4 ANN2 Annapurna … <NA> Annapur… 7937 26040 1 Annapurna 5
## 5 ANN3 Annapurna … <NA> Annapur… 7555 24787 1 Annapurna 5
## 6 ANN4 Annapurna … <NA> Annapur… 7525 24688 1 Annapurna 5
## 7 ANNE Annapurna … <NA> Annapur… 8026 26332 1 Annapurna 5
## 8 ANNM Annapurna … <NA> Annapur… 8051 26414 1 Annapurna 5
## 9 ANNS Annapurna … Annapu… Annapur… 7219 23684 1 Annapurna 5
## 10 APIM Api Main <NA> Api Him… 7132 23399 2 Api/Byas Ri… 7
## # ℹ 470 more rows
## # ℹ 20 more variables: REGION_FACTOR <chr>, OPEN <lgl>, UNLISTED <lgl>,
## # TREKKING <lgl>, TREKYEAR <dbl>, RESTRICT <chr>, PHOST <dbl>,
## # PHOST_FACTOR <chr>, PSTATUS <dbl>, PSTATUS_FACTOR <chr>, PEAKMEMO <dbl>,
## # PYEAR <dbl>, PSEASON <dbl>, PEXPID <chr>, PSMTDATE <chr>, PCOUNTRY <chr>,
## # PSUMMITERS <chr>, PSMTNOTE <chr>, REFERMEMO <dbl>, PHOTOMEMO <dbl>