Import your data

## Rows: 882 Columns: 69
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (22): EXPID, PEAKID, SEASON_FACTOR, HOST_FACTOR, ROUTE1, ROUTE2, NATION...
## dbl  (17): YEAR, SEASON, HOST, SMTDAYS, TOTDAYS, TERMREASON, HIGHPOINT, CAMP...
## lgl  (27): ROUTE3, ROUTE4, SUCCESS1, SUCCESS2, SUCCESS3, SUCCESS4, ASCENT3, ...
## date  (3): BCDATE, SMTDATE, TERMDATE
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## Rows: 480 Columns: 29
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (14): PEAKID, PKNAME, PKNAME2, LOCATION, HIMAL_FACTOR, REGION_FACTOR, RE...
## dbl (12): HEIGHTM, HEIGHTF, HIMAL, REGION, TREKYEAR, PHOST, PSTATUS, PEAKMEM...
## lgl  (3): OPEN, UNLISTED, TREKKING
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

TidyTuesday Project data for expedition data.

## # A tibble: 882 × 69
##    EXPID     PEAKID  YEAR SEASON SEASON_FACTOR  HOST HOST_FACTOR ROUTE1   ROUTE2
##    <chr>     <chr>  <dbl>  <dbl> <chr>         <dbl> <chr>       <chr>    <chr> 
##  1 EVER20101 EVER    2020      1 Spring            2 China       N Col-N… <NA>  
##  2 EVER20102 EVER    2020      1 Spring            2 China       N Col-N… <NA>  
##  3 EVER20103 EVER    2020      1 Spring            2 China       N Col-N… <NA>  
##  4 AMAD20301 AMAD    2020      3 Autumn            1 Nepal       SW Ridge <NA>  
##  5 AMAD20302 AMAD    2020      3 Autumn            1 Nepal       SW Ridge <NA>  
##  6 AMAD20303 AMAD    2020      3 Autumn            1 Nepal       SW Ridge <NA>  
##  7 AMAD20304 AMAD    2020      3 Autumn            1 Nepal       SW Ridge <NA>  
##  8 AMAD20305 AMAD    2020      3 Autumn            1 Nepal       SW Ridge <NA>  
##  9 AMAD20306 AMAD    2020      3 Autumn            1 Nepal       SW Ridge <NA>  
## 10 AMAD20307 AMAD    2020      3 Autumn            1 Nepal       SW Ridge <NA>  
## # ℹ 872 more rows
## # ℹ 60 more variables: ROUTE3 <lgl>, ROUTE4 <lgl>, NATION <chr>, LEADERS <chr>,
## #   SPONSOR <chr>, SUCCESS1 <lgl>, SUCCESS2 <lgl>, SUCCESS3 <lgl>,
## #   SUCCESS4 <lgl>, ASCENT1 <chr>, ASCENT2 <chr>, ASCENT3 <lgl>, ASCENT4 <lgl>,
## #   CLAIMED <lgl>, DISPUTED <lgl>, COUNTRIES <chr>, APPROACH <chr>,
## #   BCDATE <date>, SMTDATE <date>, SMTTIME <chr>, SMTDAYS <dbl>, TOTDAYS <dbl>,
## #   TERMDATE <date>, TERMREASON <dbl>, TERMREASON_FACTOR <chr>, …

TidyTuesday Project data for peak/mountain names.

## # A tibble: 480 × 29
##    PEAKID PKNAME      PKNAME2 LOCATION HEIGHTM HEIGHTF HIMAL HIMAL_FACTOR REGION
##    <chr>  <chr>       <chr>   <chr>      <dbl>   <dbl> <dbl> <chr>         <dbl>
##  1 AMAD   Ama Dablam  Amai D… Khumbu …    6814   22356    12 Khumbu            2
##  2 AMPG   Amphu Gyab… Amphu … Khumbu …    5630   18471    12 Khumbu            2
##  3 ANN1   Annapurna I <NA>    Annapur…    8091   26545     1 Annapurna         5
##  4 ANN2   Annapurna … <NA>    Annapur…    7937   26040     1 Annapurna         5
##  5 ANN3   Annapurna … <NA>    Annapur…    7555   24787     1 Annapurna         5
##  6 ANN4   Annapurna … <NA>    Annapur…    7525   24688     1 Annapurna         5
##  7 ANNE   Annapurna … <NA>    Annapur…    8026   26332     1 Annapurna         5
##  8 ANNM   Annapurna … <NA>    Annapur…    8051   26414     1 Annapurna         5
##  9 ANNS   Annapurna … Annapu… Annapur…    7219   23684     1 Annapurna         5
## 10 APIM   Api Main    <NA>    Api Him…    7132   23399     2 Api/Byas Ri…      7
## # ℹ 470 more rows
## # ℹ 20 more variables: REGION_FACTOR <chr>, OPEN <lgl>, UNLISTED <lgl>,
## #   TREKKING <lgl>, TREKYEAR <dbl>, RESTRICT <chr>, PHOST <dbl>,
## #   PHOST_FACTOR <chr>, PSTATUS <dbl>, PSTATUS_FACTOR <chr>, PEAKMEMO <dbl>,
## #   PYEAR <dbl>, PSEASON <dbl>, PEXPID <chr>, PSMTDATE <chr>, PCOUNTRY <chr>,
## #   PSUMMITERS <chr>, PSMTNOTE <chr>, REFERMEMO <dbl>, PHOTOMEMO <dbl>

Pivoting

long to wide form

wide to long form

Separating and Uniting

Separate a column

Unite two columns

Missing Values