#4.4.1 Linear Discriminant Analysis for

mu1 <- -1.25
mu2 <- 1.25
sigma1 <- 1
sigma2 <- 1
bayes_boundary <- (mu1 + mu2) / 2
library(ggplot2)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ lubridate 1.9.4     ✔ tibble    3.2.1
## ✔ purrr     1.0.4     ✔ tidyr     1.3.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidyverse)  # Loads ggplot2, dplyr, and other useful packages

mu1 <- -1.25
mu2 <- 1.25
sigma1 <- 1
sigma2 <- 1
bayes_boundary <- (mu1 + mu2) / 2

p1 <- ggplot(data = tibble(x = seq(-4, 4, 0.1)), aes(x)) +
  stat_function(fun = dnorm, args = list(mean = mu1, sd = sigma1),
                geom = "line", size = 1.5, color = "green") +  # Replace with actual color
  stat_function(fun = dnorm, args = list(mean = mu2, sd = sigma2),
                geom = "line", size = 1.5, color = "purple") +  # Replace with actual color
  geom_vline(xintercept = bayes_boundary, lty = 2, size = 1.5) +
  theme(axis.text.y = element_blank(), axis.ticks.y = element_blank(), axis.title.y = element_blank())  # Manually removing y-axis
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
set.seed(42)
d <- tribble(
  ~class, ~x,
  1, rnorm(20, mean = mu1, sd = sigma1),
  2, rnorm(20, mean = mu2, sd = sigma2)
) %>% unnest(x)

lda_boundary <- (mean(filter(d, class == 1)$x) + mean(filter(d, class == 2)$x)) / 2

p2 <- d %>%
  ggplot(aes(x, fill = factor(class), color = factor(class))) +
  geom_histogram(bins = 13, alpha = 0.5, position = "identity") +
  geom_vline(xintercept = bayes_boundary, lty = 2, size = 1.5) +
  geom_vline(xintercept = lda_boundary, lty = 1, size = 1.5) +
  scale_fill_manual(values = c("green", "purple")) +
  scale_color_manual(values = c("green", "purple")) +
  theme(legend.position = "none")
install.packages("patchwork")
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.4'
## (as 'lib' is unspecified)
library(patchwork)
p1 | p2  # Combining the plots side by side (patchwork)

set.seed(2021)
d <- tribble(
  ~class, ~x,
  1, rnorm(1e3, mean = mu1, sd = sigma1),
  2, rnorm(1e3, mean = mu2, sd = sigma2)
) %>%
  unnest(x)
# The LDA boundary must be recomputed with the new data
lda_boundary <-
  (mean(filter(d, class == 1)$x) + mean(filter(d, class == 2)$x)) / 2

#4.4.2 Linear Discriminant Analysis for p>1

library(tidyr)
library(dplyr)
library(mvtnorm)
library(ggplot2)
library(patchwork)
d <- crossing(x1 = seq(-2, 2, 0.1), x2 = seq(-2, 2, 0.1))
d1 <- d %>%
  bind_cols(
    prob = mvtnorm::dmvnorm(
      x = as.matrix(d),
      mean = c(0, 0), sigma = matrix(c(1, 0, 0, 1), nrow = 2)
    )
  )
d2 <- d %>%
  bind_cols(
    prob = mvtnorm::dmvnorm(
      x = as.matrix(d),
      mean = c(0, 0), sigma = matrix(c(1, 0.7, 0.7, 1), nrow = 2)
    )
  )
p1 <- d1 %>%
  ggplot(aes(x = x1, y = x2)) +
  geom_tile(aes(fill = prob)) +
  scale_x_continuous(expand = c(0, 0)) +
  scale_y_continuous(expand = c(0, 0)) +
  theme(legend.position = "none")
p2 <- d2 %>%
  ggplot(aes(x = x1, y = x2)) +
  geom_tile(aes(fill = prob)) +
  scale_x_continuous(expand = c(0, 0)) +
  scale_y_continuous(expand = c(0, 0)) +
  theme(legend.position = "none")
p1 | p2

#4.5 A Comparison of Classification Methods

make_blobs <- function(
  n_samples = 40, n_features = 2,
  # By default, class 1 is centered at (0, 0) and class 2 at (1, 1)
  cluster_centers = matrix(c(0, 0, 1, 1), nrow = 2, byrow = TRUE),
  # By default, the two features are uncorrelated with variance = 1
  cluster_covar = matrix(c(1, 0, 0, 1), nrow = 2),
  dist = c("norm", "t"), t_df = 5
) {
  if (ncol(cluster_centers) != n_features) {
    stop("Dimensionality of centers must equal number of features")
  }
  if ((nrow(cluster_covar) != n_features) |
      (ncol(cluster_covar) != n_features)) {
    stop("Dimensionality of covariance matrix must match number of features")
  }
  dist <- match.arg(dist)
  
  # Equally divides each of `n_samples` into the different categories according
  #  to the number of provided classes
  categories <- rep(1:nrow(cluster_centers), length.out = n_samples)
  
  if (dist == "norm") {
    points <- MASS::mvrnorm(n = n_samples, mu = c(0, 0), Sigma = cluster_covar)
  } else if (dist == "t") {
    points <- mvtnorm::rmvt(n = n_samples, delta = c(0, 0), df = t_df,
                            sigma = cluster_covar)
  }
  points <- points + cluster_centers[categories, ]
  
  colnames(points) <- c("x", "y")
  as_tibble(points) %>%
    bind_cols(category = factor(categories))
}
library(dplyr)
library(tidyr)
sim_linear_train <- tribble(
  ~ scenario, ~ n_samples, ~ corr, ~ dist,
  "Scenario 1", 40, 0.0, "norm",
  "Scenario 2", 40, -0.5, "norm",
  "Scenario 3", 40, -0.5, "t"
) %>%
  crossing(sim = 1:100) %>%
  rowwise() %>%
  mutate(
    train_data = list(make_blobs(
      n_samples = n_samples,
      cluster_covar = matrix(c(1, corr, corr, 1), nrow = 2),
      dist = dist
    ))
  ) %>%
  ungroup()
sim_linear_test <- sim_linear_train %>%
  distinct(scenario, corr, dist) %>%
  rowwise() %>%
  mutate(
    test_data = list(make_blobs(
      n_samples = 1000,
      cluster_covar = matrix(c(1, corr, corr, 1), nrow = 2),
      dist = dist
    ))
  ) %>%
  ungroup()
# A helper function for fitting on a training set and getting accuracy from
#  a testing set
calc_test_accuracy <- function(model_label, train_data, test_data, model) {
  wf <- workflow() %>%
    add_recipe(recipe(category ~ x + y, data = train_data)) %>%
    add_model(model)
    
  if (model_label == "KNN-CV") {
    # 5 fold cross-validation
    train_data_folds <- vfold_cv(train_data, v = 5)
    tune_res <- wf %>%
      tune_grid(
        resamples = train_data_folds,
        # Try 1 to 10 neighbors
        grid = tibble(neighbors = 1:10)
      )
    # Overwrite the workflow with the best `neighbors` value by CV accuracy
    wf <- finalize_workflow(wf, select_best(tune_res, "accuracy")) 
  }
  
  wf %>%
    fit(data = train_data) %>%
    augment(test_data) %>%
    accuracy(truth = category, estimate = .pred_class) %>%
    pull(.estimate)
}
library(tictoc)
tic()

#4.8 Exercises

library(ISLR2)
weekly <- ISLR2::Weekly
library(skimr)
skimr::skim(weekly)
Data summary
Name weekly
Number of rows 1089
Number of columns 9
_______________________
Column type frequency:
factor 1
numeric 8
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
Direction 0 1 FALSE 2 Up: 605, Dow: 484

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
Year 0 1 2000.05 6.03 1990.00 1995.00 2000.00 2005.00 2010.00 ▇▆▆▆▆
Lag1 0 1 0.15 2.36 -18.20 -1.15 0.24 1.41 12.03 ▁▁▆▇▁
Lag2 0 1 0.15 2.36 -18.20 -1.15 0.24 1.41 12.03 ▁▁▆▇▁
Lag3 0 1 0.15 2.36 -18.20 -1.16 0.24 1.41 12.03 ▁▁▆▇▁
Lag4 0 1 0.15 2.36 -18.20 -1.16 0.24 1.41 12.03 ▁▁▆▇▁
Lag5 0 1 0.14 2.36 -18.20 -1.17 0.23 1.41 12.03 ▁▁▆▇▁
Volume 0 1 1.57 1.69 0.09 0.33 1.00 2.05 9.33 ▇▂▁▁▁
Today 0 1 0.15 2.36 -18.20 -1.15 0.24 1.41 12.03 ▁▁▆▇▁
auto <- ISLR2::Auto %>%
  mutate(mpg01 = ifelse(mpg > median(mpg), 1, 0),
         mpg01 = factor(mpg01))
glimpse(auto)
## Rows: 392
## Columns: 10
## $ mpg          <dbl> 18, 15, 18, 16, 17, 15, 14, 14, 14, 15, 15, 14, 15, 14, 2…
## $ cylinders    <int> 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 4, 6, 6, 6, 4, …
## $ displacement <dbl> 307, 350, 318, 304, 302, 429, 454, 440, 455, 390, 383, 34…
## $ horsepower   <int> 130, 165, 150, 150, 140, 198, 220, 215, 225, 190, 170, 16…
## $ weight       <int> 3504, 3693, 3436, 3433, 3449, 4341, 4354, 4312, 4425, 385…
## $ acceleration <dbl> 12.0, 11.5, 11.0, 12.0, 10.5, 10.0, 9.0, 8.5, 10.0, 8.5, …
## $ year         <int> 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 7…
## $ origin       <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, …
## $ name         <fct> chevrolet chevelle malibu, buick skylark 320, plymouth sa…
## $ mpg01        <fct> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, …
auto <- auto %>%
  mutate(origin = factor(origin, levels = 1:3,
                         labels = c("American", "European", "Japanese")))
auto %>%
  count(origin, mpg01) %>%
  ggplot(aes(y = origin, x = mpg01)) +
  geom_tile(aes(fill = n)) +
  geom_text(aes(label = n), color = "white") +
  scale_x_discrete(expand = c(0, 0)) +
  scale_y_discrete(expand = c(0, 0)) +
  theme(legend.position = "none")

boston <- ISLR2::Boston %>%
  mutate(
    crim01 = ifelse(crim > median(crim), 1, 0),
    crim01 = factor(crim01),
    # Convert the binary chas variable to TRUE/FALSE
    chas = chas == 1
  )
glimpse(boston)
## Rows: 506
## Columns: 14
## $ crim    <dbl> 0.00632, 0.02731, 0.02729, 0.03237, 0.06905, 0.02985, 0.08829,…
## $ zn      <dbl> 18.0, 0.0, 0.0, 0.0, 0.0, 0.0, 12.5, 12.5, 12.5, 12.5, 12.5, 1…
## $ indus   <dbl> 2.31, 7.07, 7.07, 2.18, 2.18, 2.18, 7.87, 7.87, 7.87, 7.87, 7.…
## $ chas    <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,…
## $ nox     <dbl> 0.538, 0.469, 0.469, 0.458, 0.458, 0.458, 0.524, 0.524, 0.524,…
## $ rm      <dbl> 6.575, 6.421, 7.185, 6.998, 7.147, 6.430, 6.012, 6.172, 5.631,…
## $ age     <dbl> 65.2, 78.9, 61.1, 45.8, 54.2, 58.7, 66.6, 96.1, 100.0, 85.9, 9…
## $ dis     <dbl> 4.0900, 4.9671, 4.9671, 6.0622, 6.0622, 6.0622, 5.5605, 5.9505…
## $ rad     <int> 1, 2, 2, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,…
## $ tax     <dbl> 296, 242, 242, 222, 222, 222, 311, 311, 311, 311, 311, 311, 31…
## $ ptratio <dbl> 15.3, 17.8, 17.8, 18.7, 18.7, 18.7, 15.2, 15.2, 15.2, 15.2, 15…
## $ lstat   <dbl> 4.98, 9.14, 4.03, 2.94, 5.33, 5.21, 12.43, 19.15, 29.93, 17.10…
## $ medv    <dbl> 24.0, 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.9, 15…
## $ crim01  <fct> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,…
boston %>%
  count(chas, crim01) %>%
  ggplot(aes(y = chas, x = crim01)) +
  geom_tile(aes(fill = n)) +
  geom_text(aes(label = n), color = "white") +
  scale_x_discrete(expand = c(0, 0)) +
  scale_y_discrete(expand = c(0, 0)) +
  theme(legend.position = "none")