#Problem 3 We now review k-fold cross-validation.

##a) Explain how k-fold cross-validation is implemented. In K-fold cross-validation, the dataset is divided into K equal subsets. The model is trained on K-1 of these subsets and tested on the remaining 1 subset. This process is repeated K times, with each of the K subsets used exactly once as the test set. The results are then averaged to provide a more robust estimate of model performance.

##b) What are the advantages and disadvantages of k-fold cross-validation relative to: i. The validation set approach? Advantage of k-fold: Better data utilization, average of results across multiple splits, reduces overfitting Disadvantages: Computationally Expensive, Validation set may be sufficient for big datasets.

  1. LOOCV? Advantage of k-fold: More stable results due to multiple test sets, K times model training vs. N times in LOOCV. Disadvantages: LOOCV is more sensitive to individual data points, Averages results over K folds, potentially missing finer-grained insights.

#Problem 5 In Chapter 4, we used logistic regression to predict the probability of default using income and balance on the Default data set. We will now estimate the test error of this logistic regression model using the validation set approach. Do not forget to set a random seed before beginning your analysis.

##(a) Fit a logistic regression model that uses income and balance to predict default.

set.seed(23)
d1 = Default
glm1 = glm(default ~ income + balance, data = d1, family = "binomial")
summary(glm1)
## 
## Call:
## glm(formula = default ~ income + balance, family = "binomial", 
##     data = d1)
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.154e+01  4.348e-01 -26.545  < 2e-16 ***
## income       2.081e-05  4.985e-06   4.174 2.99e-05 ***
## balance      5.647e-03  2.274e-04  24.836  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 2920.6  on 9999  degrees of freedom
## Residual deviance: 1579.0  on 9997  degrees of freedom
## AIC: 1585
## 
## Number of Fisher Scoring iterations: 8

##(b) Using the validation set approach, estimate the test error of this model. In order to do this, you must perform the following steps: i) Split the sample set into a training set and a validation set.

set.seed(23)
index <- sample(nrow(d1),0.7*nrow(d1),replace = FALSE) 
train_d1 <- d1[index, ]
val_d1 <- d1[-index, ]
  1. Fit a multiple logistic regression model using only the training observations.
set.seed(23)
glm2 = glm(default ~ income + balance, data = train_d1, family = "binomial")
summary(glm2)
## 
## Call:
## glm(formula = default ~ income + balance, family = "binomial", 
##     data = train_d1)
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.189e+01  5.410e-01 -21.975  < 2e-16 ***
## income       2.798e-05  6.086e-06   4.597 4.28e-06 ***
## balance      5.686e-03  2.794e-04  20.351  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1976.0  on 6999  degrees of freedom
## Residual deviance: 1067.3  on 6997  degrees of freedom
## AIC: 1073.3
## 
## Number of Fisher Scoring iterations: 8
  1. Obtain a prediction of default status for each individual in the validation set by computing the posterior probability of default for that individual, and classifying the individual to the default category if the posterior probability is greater than 0.5.
d1_prob = predict(glm2, val_d1, type = "response")
d1_pred = rep("No", nrow(val_d1))
d1_pred[d1_prob > .5] = "Yes"
  1. Compute the validation set error, which is the fraction of the observations in the validation set that are misclassified.
mean(d1_pred!=val_d1$default)
## [1] 0.02733333

##(c) Repeat the process in (b) three times, using three different splits of the observations into a training set and a validation set. Comment on the results obtained.

1st time

set.seed(23)
index <- sample(nrow(d1),0.5*nrow(d1),replace = F) 
train_d1 <- d1[index, ]
val_d1 <- d1[-index, ]

glm2 = glm(default ~ income + balance, data = train_d1, family = "binomial")

d1_prob = predict(glm2, val_d1, type = "response")
d1_pred = rep("No", nrow(val_d1))
d1_pred[d1_prob > .5] = "Yes"

mean(d1_pred!=val_d1$default)
## [1] 0.029

2nd time

set.seed(23)
index <- sample(nrow(d1),0.8*nrow(d1),replace = F) 
train_d1 <- d1[index, ]
val_d1 <- d1[-index, ]

glm2 = glm(default ~ income + balance, data = train_d1, family = "binomial")

d1_prob = predict(glm2, val_d1, type = "response")
d1_pred = rep("No", nrow(val_d1))
d1_pred[d1_prob > .5] = "Yes"

mean(d1_pred!=val_d1$default)
## [1] 0.0245

3rd time

set.seed(23)
index <- sample(nrow(d1),0.9*nrow(d1),replace = F) 
train_d1 <- d1[index, ]
val_d1 <- d1[-index, ]

glm2 = glm(default ~ income + balance, data = train_d1, family = "binomial")

d1_prob = predict(glm2, val_d1, type = "response")
d1_pred = rep("No", nrow(val_d1))
d1_pred[d1_prob > .5] = "Yes"

mean(d1_pred!=val_d1$default)
## [1] 0.027

##(d) Now consider a logistic regression model that predicts the probability of default using income, balance, and a dummy variable for student. Estimate the test error for this model using the validation set approach. Comment on whether or not including a dummy variable for student leads to a reduction in the test error rate.

set.seed(23)
index <- sample(nrow(d1),0.9*nrow(d1),replace = F) 
train_d1 <- d1[index, ]
val_d1 <- d1[-index, ]

glm2 = glm(default ~ income + balance + as.factor(student), data = train_d1, family = "binomial")

d1_prob = predict(glm2, val_d1, type = "response")
d1_pred = rep("No", nrow(val_d1))
d1_pred[d1_prob > .5] = "Yes"

mean(d1_pred!=val_d1$default)
## [1] 0.027

Finally by add the ‘Student’ predictor increased the test error.

#Problem 6 We continue to consider the use of a logistic regression model to predict the probability of default using income and balance on the Default data set. In particular, we will now compute estimates for the standard errors of the income and balance logistic regression coefficients in two different ways: (1) using the bootstrap, and (2) using the standard formula for computing the standard errors in the glm() function. Do not forget to set a random seed before beginning your analysis.

##(a) Using the summary() and glm() functions, determine the estimated standard errors for the coefficients associated with income and balance in a multiple logistic regression model that uses both predictors.

glm3 = glm(default ~ income + balance, data = d1, family = "binomial")
summary(glm3)$coef
##                  Estimate   Std. Error    z value      Pr(>|z|)
## (Intercept) -1.154047e+01 4.347564e-01 -26.544680 2.958355e-155
## income       2.080898e-05 4.985167e-06   4.174178  2.990638e-05
## balance      5.647103e-03 2.273731e-04  24.836280 3.638120e-136

The estimated std error for coeff is for income is 4.985e-06 and for balance is 2.274e-04.

##(b) Write a function, boot.fn(), that takes as input the Default data set as well as an index of the observations, and that outputs the coefficient estimates for income and balance in the multiple logistic regression model.

boot.fn = function(data, index) + coef(glm(default ~ income + balance, data = d1, subset = index, family = "binomial"))
set.seed(23)
boot.fn(d1, 1:10000)[-1]
##       income      balance 
## 2.080898e-05 5.647103e-03

##(c) Use the boot() function together with your boot.fn() function to estimate the standard errors of the logistic regression coefficients for income and balance.

set.seed(23)
boot(data = d1, statistic = boot.fn, R = 1000)
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = d1, statistic = boot.fn, R = 1000)
## 
## 
## Bootstrap Statistics :
##          original        bias     std. error
## t1* -1.154047e+01 -6.425518e-03 4.252997e-01
## t2*  2.080898e-05 -4.567628e-08 4.571768e-06
## t3*  5.647103e-03 -3.014214e-07 2.228104e-04

The Estimated std error is for income is 4.572e-06 and for balance is 2.228e-04.

##(d) Comment on the estimated standard errors obtained using the glm() function and using your bootstrap function. Using the glm() function, the ESE for income is 4.985e-06 and for balance is 2.274e-04. Using the bootstrap function function, the ESE for income is income is 4.572e-06 and for balance is 2.228e-04.

Standard error was lower when using bootstrap.

#Problem 9 We will now consider the Boston housing data set, from the ISLR2 library.

bos = Boston

##(a) Based on this data set, provide an estimate for the population mean of medv.

mean(bos$medv)
## [1] 22.53281

##(b) Provide an estimate of the standard error of the population mean of medv. Interpret this result. Hint: We can compute the standard error of the sample mean by dividing the sample standard deviation by the square root of the number of observations.

sd(bos$medv)/sqrt(length(bos$medv))
## [1] 0.4088611

##(c) Now estimate the standard error of the population mean of medv using the bootstrap. How does this compare to your answer from (b)?

boot.fn = function(vector, index) {mean(vector[index])}
set.seed(23)
boot_res = boot(bos$medv, boot.fn, 1000)
boot_res
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = bos$medv, statistic = boot.fn, R = 1000)
## 
## 
## Bootstrap Statistics :
##     original      bias    std. error
## t1* 22.53281 -0.01904763   0.4000822

The results have similar error but negligibly lower (0.400 vs 0.409).

##(d) Based on your bootstrap estimate from (c), provide a 95 % confidence interval for the mean of medv. Compare it to the results obtained using t.test(Boston$medv).

boot_res_sd = sd(boot_res$t)
c(mean(bos$medv) - 2*boot_res_sd, mean(bos$medv) + 2*boot_res_sd)
## [1] 21.73264 23.33297
t.test(bos$medv)
## 
##  One Sample t-test
## 
## data:  bos$medv
## t = 55.111, df = 505, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  21.72953 23.33608
## sample estimates:
## mean of x 
##  22.53281

##(e) Based on this data set, provide an estimate, for the median value of medv in the population.

median(bos$medv)
## [1] 21.2

##(f) We now would like to estimate the standard error of the population median of medv. Unfortunately, there is no simple formula for computing the standard error of the median. Instead, estimate the standard error of the median using the bootstrap. Comment on your findings.

boot.fn = function(vector, index) {median(vector[index])}
set.seed(23)
boot_res = boot(bos$medv, boot.fn, 1000)
boot_res
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = bos$medv, statistic = boot.fn, R = 1000)
## 
## 
## Bootstrap Statistics :
##     original   bias    std. error
## t1*     21.2 -0.02375   0.3647828

Standard error is small

##(g) Based on this data set, provide an estimate for the tenth percentile of medv in Boston census tracts. Call this quantity mew^0.1. (You can use the quantile() function.)

quantile(bos$medv, 0.1)
##   10% 
## 12.75

##(h) Use the bootstrap to estimate the standard error of mewˆ0.1. Comment on your findings.

boot.fn = function(vector, index) {quantile(vector[index], 0.1)}
set.seed(23)
boot_res = boot(bos$medv, boot.fn, 1000)
boot_res
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = bos$medv, statistic = boot.fn, R = 1000)
## 
## 
## Bootstrap Statistics :
##     original  bias    std. error
## t1*    12.75   0.028   0.4964549

Standard error is actually large than other bootstraps.