This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
library(readr)
library(psych)
## Warning: package 'psych' was built under R version 4.4.3
insuranceDS <- read_csv("C:/Users/ijiol/OneDrive/Documents/R projects/R for Advanced Topics/Datasets/insurance.csv")
## Rows: 1338 Columns: 7
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): sex, smoker, region
## dbl (4): age, bmi, children, charges
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
insurance <- data.frame(insuranceDS, stringsAsFactors = TRUE)
str(insurance)
## 'data.frame': 1338 obs. of 7 variables:
## $ age : num 19 18 28 33 32 31 46 37 37 60 ...
## $ sex : chr "female" "male" "male" "male" ...
## $ bmi : num 27.9 33.8 33 22.7 28.9 ...
## $ children: num 0 1 3 0 0 0 1 3 2 0 ...
## $ smoker : chr "yes" "no" "no" "no" ...
## $ region : chr "southwest" "southeast" "southeast" "northwest" ...
## $ charges : num 16885 1726 4449 21984 3867 ...
summary(insurance$charges)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1122 4740 9382 13270 16640 63770
hist(insurance$charges)
table(insurance$region)
##
## northeast northwest southeast southwest
## 324 325 364 325
cor(insurance[c("age", "bmi", "children", "charges")])
## age bmi children charges
## age 1.0000000 0.1092719 0.04246900 0.29900819
## bmi 0.1092719 1.0000000 0.01275890 0.19834097
## children 0.0424690 0.0127589 1.00000000 0.06799823
## charges 0.2990082 0.1983410 0.06799823 1.00000000
#visualizing relathionships using scatter-plot matrix
pairs(insurance[c("age", "bmi", "children", "charges")])
#enhanced scatterplot
pairs.panels(insurance[c("age", "bmi", "children", "charges")])
#Building a model
ins_model <- lm(formula = charges~., data = insurance)
summary(ins_model)
##
## Call:
## lm(formula = charges ~ ., data = insurance)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11304.9 -2848.1 -982.1 1393.9 29992.8
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -11938.5 987.8 -12.086 < 2e-16 ***
## age 256.9 11.9 21.587 < 2e-16 ***
## sexmale -131.3 332.9 -0.394 0.693348
## bmi 339.2 28.6 11.860 < 2e-16 ***
## children 475.5 137.8 3.451 0.000577 ***
## smokeryes 23848.5 413.1 57.723 < 2e-16 ***
## regionnorthwest -353.0 476.3 -0.741 0.458769
## regionsoutheast -1035.0 478.7 -2.162 0.030782 *
## regionsouthwest -960.0 477.9 -2.009 0.044765 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6062 on 1329 degrees of freedom
## Multiple R-squared: 0.7509, Adjusted R-squared: 0.7494
## F-statistic: 500.8 on 8 and 1329 DF, p-value: < 2.2e-16
#improving model performance
insurance$age2 <- insurance$age^2
insurance$bmi30 <- ifelse(insurance$bmi >= 30, 1, 0)
ins_model2 <- lm(charges ~ age + age2 + children + bmi + sex+ bmi30*smoker + region, data = insurance)
summary(ins_model2)
##
## Call:
## lm(formula = charges ~ age + age2 + children + bmi + sex + bmi30 *
## smoker + region, data = insurance)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17296.4 -1656.0 -1263.3 -722.1 24160.2
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 134.2509 1362.7511 0.099 0.921539
## age -32.6851 59.8242 -0.546 0.584915
## age2 3.7316 0.7463 5.000 6.50e-07 ***
## children 678.5612 105.8831 6.409 2.04e-10 ***
## bmi 120.0196 34.2660 3.503 0.000476 ***
## sexmale -496.8245 244.3659 -2.033 0.042240 *
## bmi30 -1000.1403 422.8402 -2.365 0.018159 *
## smokeryes 13404.6866 439.9491 30.469 < 2e-16 ***
## regionnorthwest -279.2038 349.2746 -0.799 0.424212
## regionsoutheast -828.5467 351.6352 -2.356 0.018604 *
## regionsouthwest -1222.6437 350.5285 -3.488 0.000503 ***
## bmi30:smokeryes 19810.7533 604.6567 32.764 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4445 on 1326 degrees of freedom
## Multiple R-squared: 0.8664, Adjusted R-squared: 0.8653
## F-statistic: 781.7 on 11 and 1326 DF, p-value: < 2.2e-16
#using the regression model
insurance$pred <- predict(ins_model2, insurance)
cor(insurance$pred, insurance$charges)
## [1] 0.9308031
abline(a = 0, b = 1, col = "red", lwd = 3, lty = 2)
predict(ins_model2, data.frame(age = 30, age2 = 30^2, children = 2, bmi = 30, sex = "male", bmi30 = 1, smoker = "no", region = "northeast"))
## 1
## 5972.859
predict(ins_model2, data.frame(age = 30, age2 = 30^2, children = 2, bmi = 30, sex = "female", bmi30 = 1, smoker = "no", region = "northeast"))
## 1
## 6469.683
You can also embed plots, for example:
Note that the echo = FALSE
parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.