##
## Call:
## lm(formula = weight_loss ~ months + I(months^2))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.005364 -0.002727 0.001045 0.002409 0.003273
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.633000 0.004196 389.2 < 2e-16 ***
## months -1.232182 0.007010 -175.8 5.09e-14 ***
## I(months^2) 1.494545 0.002484 601.6 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.003568 on 7 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 1.859e+06 on 2 and 7 DF, p-value: < 2.2e-16
Remark:
According to the fitted plot, the propellant loses weight at an
increasing rate, rather than a constant rate.
## Analysis of Variance Table
##
## Response: weight_loss
## Df Sum Sq Mean Sq F value Pr(>F)
## months 1 42.703 42.703 3355253 < 2.2e-16 ***
## I(months^2) 1 4.607 4.607 361974 < 2.2e-16 ***
## Residuals 7 0.000 0.000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Remark:
The Pr(>F) significance codes for both coefficients are zero. The
regression model is statistically significant
## [1] "The value of beta_2 is 1.4945"
## [1] "The value of p-value is 0"
Remark:
B0 does not equal 0, the quadratic term is statistically
significant
Extrapolating with polynomial models can lead to unreliable and unexpected predictions when used outside the range of the original data.
##
## Call:
## lm(formula = vapor ~ temp)
##
## Residuals:
## 1 2 3 4 5 6
## 17.738 -1.090 -13.919 -17.548 -7.476 22.295
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -35.6667 17.2317 -2.070 0.10725
## temp 2.7129 0.4425 6.131 0.00359 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.51 on 4 degrees of freedom
## Multiple R-squared: 0.9038, Adjusted R-squared: 0.8798
## F-statistic: 37.59 on 1 and 4 DF, p-value: 0.003586
Remark: There is some deviation at higher temperatures, suggesting a higher-order model.
Remark: The residuals are scattered from the line, showing that the model isn’t as adequate as it could be.
Remark: The points have a curved pattern, showing that the first-order model isn’t as adequate as it could be.
##
## Call:
## lm(formula = vapor ~ temp + I(temp^2))
##
## Residuals:
## 1 2 3 4 5 6
## -2.179 2.893 2.014 -1.614 -3.493 2.379
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 20.100000 6.335989 3.172 0.05039 .
## temp -1.469643 0.414518 -3.545 0.03822 *
## I(temp^2) 0.059750 0.005797 10.307 0.00195 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.542 on 3 degrees of freedom
## Multiple R-squared: 0.9974, Adjusted R-squared: 0.9956
## F-statistic: 566.4 on 2 and 3 DF, p-value: 0.0001357
Remark: The p-value for the quadratic term is < 0.05, suggesting that it is statistically significant.
Remark: There is almost no deviation from the line,
suggesting a higher-order model is adequate.
The residuals are not scattered from the line, showing that the model is
adequate.
The points have are random, showing that the second-order model is
adequate.
##
## Call:
## lm(formula = carbon ~ temp2 + pressure + I(temp2^2) + I(pressure^2) +
## I(temp2 * pressure))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.75548 -0.22238 -0.00342 0.26024 0.96452
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3025.3186 2045.7464 1.479 0.1897
## temp2 -194.2729 132.0643 -1.471 0.1917
## pressure -6.0507 20.6063 -0.294 0.7789
## I(temp2^2) 3.6259 2.2098 1.641 0.1519
## I(pressure^2) 1.1542 0.3237 3.565 0.0118 *
## I(temp2 * pressure) -1.3317 0.8962 -1.486 0.1878
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6194 on 6 degrees of freedom
## Multiple R-squared: 0.9933, Adjusted R-squared: 0.9877
## F-statistic: 177.2 on 5 and 6 DF, p-value: 1.983e-06
Remark: Most residuals are small, suggesting a good fit. Only I(pressure^2) is significant at the 0.05 level. R-squared: 0.9933 and Adjusted R-squared: 0.9877 suggesting a good fit. F-stat is 177.2 with a p-value: 1.983e-06 suggesting overall the model is highly significant.
## Analysis of Variance Table
##
## Response: carbon
## Df Sum Sq Mean Sq F value Pr(>F)
## temp2 1 109.964 109.964 286.5944 2.716e-06 ***
## pressure 1 224.101 224.101 584.0631 3.298e-07 ***
## I(temp2^2) 1 0.198 0.198 0.5173 0.49905
## I(pressure^2) 1 4.776 4.776 12.4482 0.01239 *
## I(temp2 * pressure) 1 0.847 0.847 2.2081 0.18784
## Residuals 6 2.302 0.384
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Remark: The p-value for two of the coefficients are significant. .
##
## Call:
## lm(formula = carbon ~ temp2 + pressure + I(temp2^2) + I(pressure^2) +
## I(temp2 * pressure))
##
## Coefficients:
## (Intercept) temp2 pressure
## 3025.319 -194.273 -6.051
## I(temp2^2) I(pressure^2) I(temp2 * pressure)
## 3.626 1.154 -1.332
## Analysis of Variance Table
##
## Model 1: carbon ~ temp2 + pressure + I(temp2^2) + I(pressure^2)
## Model 2: carbon ~ temp2 + pressure + I(temp2^2) + I(pressure^2) + I(temp2 *
## pressure)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 7 3.1494
## 2 6 2.3022 1 0.84723 2.2081 0.1878
Remark: The p-value is greater than 0.05, indicating there is no evidence of lack of fit from excluding the interaction term.
Remark: The p-value for interaction term (temp2 * pressure) = 0.1878 is greater than the usual significance level of 0.05. This suggests that the interaction term does not contribute significantly to the model.
Remark: The second-order terms are not significant. P-value for temp2^2 = 0.1519 (not significant). P-value for pressure^2 = 0.0118 (significant at 0.05)
##
## Call:
## rsm(formula = carbon ~ SO(temp2, pressure))
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3025.31864 2045.74639 1.4788 0.18967
## temp2 -194.27289 132.06428 -1.4710 0.19169
## pressure -6.05067 20.60625 -0.2936 0.77893
## temp2:pressure -1.33171 0.89619 -1.4860 0.18784
## temp2^2 3.62587 2.20978 1.6408 0.15194
## pressure^2 1.15425 0.32373 3.5655 0.01185 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared: 0.9933, Adjusted R-squared: 0.9877
## F-statistic: 177.2 on 5 and 6 DF, p-value: 1.983e-06
##
## Analysis of Variance Table
##
## Response: carbon
## Df Sum Sq Mean Sq F value Pr(>F)
## FO(temp2, pressure) 2 334.07 167.033 435.3288 3.206e-07
## TWI(temp2, pressure) 1 0.83 0.834 2.1727 0.19092
## PQ(temp2, pressure) 2 4.99 2.494 6.5004 0.03149
## Residuals 6 2.30 0.384
## Lack of fit 3 0.73 0.242 0.4605 0.72969
## Pure error 3 1.58 0.525
##
## Stationary point of response surface:
## temp2 pressure
## 30.50246 20.21707
##
## Eigenanalysis:
## eigen() decomposition
## $values
## [1] 3.7938410 0.9862833
##
## $vectors
## [,1] [,2]
## temp2 -0.9696254 -0.2445947
## pressure 0.2445947 -0.9696254
Remark: Eigenanalysis: values are both positive => a minimum. From the plots we can see the level of carbonation increase with the increase in temperature and operating pressure.