R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

library(readr)
## Warning: package 'readr' was built under R version 4.4.3
library(psych)
## Warning: package 'psych' was built under R version 4.4.3
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.4.3
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
insurance <- read_csv("C:/Users/khalil2823/Downloads/insurance (1).csv")
## Rows: 1338 Columns: 7
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): sex, smoker, region
## dbl (4): age, bmi, children, charges
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
View(insurance)
head(insurance)
## # A tibble: 6 × 7
##     age sex      bmi children smoker region    charges
##   <dbl> <chr>  <dbl>    <dbl> <chr>  <chr>       <dbl>
## 1    19 female  27.9        0 yes    southwest  16885.
## 2    18 male    33.8        1 no     southeast   1726.
## 3    28 male    33          3 no     southeast   4449.
## 4    33 male    22.7        0 no     northwest  21984.
## 5    32 male    28.9        0 no     northwest   3867.
## 6    31 female  25.7        0 no     southeast   3757.
summary(insurance)
##       age            sex                 bmi           children    
##  Min.   :18.00   Length:1338        Min.   :15.96   Min.   :0.000  
##  1st Qu.:27.00   Class :character   1st Qu.:26.30   1st Qu.:0.000  
##  Median :39.00   Mode  :character   Median :30.40   Median :1.000  
##  Mean   :39.21                      Mean   :30.66   Mean   :1.095  
##  3rd Qu.:51.00                      3rd Qu.:34.69   3rd Qu.:2.000  
##  Max.   :64.00                      Max.   :53.13   Max.   :5.000  
##     smoker             region             charges     
##  Length:1338        Length:1338        Min.   : 1122  
##  Class :character   Class :character   1st Qu.: 4740  
##  Mode  :character   Mode  :character   Median : 9382  
##                                        Mean   :13270  
##                                        3rd Qu.:16640  
##                                        Max.   :63770
str(insurance)
## spc_tbl_ [1,338 × 7] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ age     : num [1:1338] 19 18 28 33 32 31 46 37 37 60 ...
##  $ sex     : chr [1:1338] "female" "male" "male" "male" ...
##  $ bmi     : num [1:1338] 27.9 33.8 33 22.7 28.9 ...
##  $ children: num [1:1338] 0 1 3 0 0 0 1 3 2 0 ...
##  $ smoker  : chr [1:1338] "yes" "no" "no" "no" ...
##  $ region  : chr [1:1338] "southwest" "southeast" "southeast" "northwest" ...
##  $ charges : num [1:1338] 16885 1726 4449 21984 3867 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   age = col_double(),
##   ..   sex = col_character(),
##   ..   bmi = col_double(),
##   ..   children = col_double(),
##   ..   smoker = col_character(),
##   ..   region = col_character(),
##   ..   charges = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
numeric_vars<-insurance[,sapply(insurance,is.numeric)]
cor(numeric_vars)
##                age       bmi   children    charges
## age      1.0000000 0.1092719 0.04246900 0.29900819
## bmi      0.1092719 1.0000000 0.01275890 0.19834097
## children 0.0424690 0.0127589 1.00000000 0.06799823
## charges  0.2990082 0.1983410 0.06799823 1.00000000
pairs(insurance[c("age","bmi","children","charges")])

pairs.panels(insurance[c("age","bmi","children","charges")])

model1<-lm(charges~age,data=insurance)
summary(model1)
## 
## Call:
## lm(formula = charges ~ age, data = insurance)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
##  -8059  -6671  -5939   5440  47829 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3165.9      937.1   3.378 0.000751 ***
## age            257.7       22.5  11.453  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11560 on 1336 degrees of freedom
## Multiple R-squared:  0.08941,    Adjusted R-squared:  0.08872 
## F-statistic: 131.2 on 1 and 1336 DF,  p-value: < 2.2e-16
model2<-lm(charges~.,data=insurance)
summary(model2)
## 
## Call:
## lm(formula = charges ~ ., data = insurance)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -11304.9  -2848.1   -982.1   1393.9  29992.8 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -11938.5      987.8 -12.086  < 2e-16 ***
## age                256.9       11.9  21.587  < 2e-16 ***
## sexmale           -131.3      332.9  -0.394 0.693348    
## bmi                339.2       28.6  11.860  < 2e-16 ***
## children           475.5      137.8   3.451 0.000577 ***
## smokeryes        23848.5      413.1  57.723  < 2e-16 ***
## regionnorthwest   -353.0      476.3  -0.741 0.458769    
## regionsoutheast  -1035.0      478.7  -2.162 0.030782 *  
## regionsouthwest   -960.0      477.9  -2.009 0.044765 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6062 on 1329 degrees of freedom
## Multiple R-squared:  0.7509, Adjusted R-squared:  0.7494 
## F-statistic: 500.8 on 8 and 1329 DF,  p-value: < 2.2e-16
plot(model2$residuals,main="Residuals Plot", ylab="Residuals",col="blue")

insurance$age2<-insurance$age^2
insurance$bmi30<-ifelse(insurance$bmi>=30,1,0)

model3<-lm(charges~age+age2+children+bmi+sex+bmi30*smoker+region,data=insurance)
summary(model3)
## 
## Call:
## lm(formula = charges ~ age + age2 + children + bmi + sex + bmi30 * 
##     smoker + region, data = insurance)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -17296.4  -1656.0  -1263.3   -722.1  24160.2 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       134.2509  1362.7511   0.099 0.921539    
## age               -32.6851    59.8242  -0.546 0.584915    
## age2                3.7316     0.7463   5.000 6.50e-07 ***
## children          678.5612   105.8831   6.409 2.04e-10 ***
## bmi               120.0196    34.2660   3.503 0.000476 ***
## sexmale          -496.8245   244.3659  -2.033 0.042240 *  
## bmi30           -1000.1403   422.8402  -2.365 0.018159 *  
## smokeryes       13404.6866   439.9491  30.469  < 2e-16 ***
## regionnorthwest  -279.2038   349.2746  -0.799 0.424212    
## regionsoutheast  -828.5467   351.6352  -2.356 0.018604 *  
## regionsouthwest -1222.6437   350.5285  -3.488 0.000503 ***
## bmi30:smokeryes 19810.7533   604.6567  32.764  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4445 on 1326 degrees of freedom
## Multiple R-squared:  0.8664, Adjusted R-squared:  0.8653 
## F-statistic: 781.7 on 11 and 1326 DF,  p-value: < 2.2e-16

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.