haunted <- read.csv("../00_data/MyData.csv")
set.seed(1234)
data <- haunted %>%
select(County, location, longitude) %>%
sample_n(5)
data
## County location longitude
## 1 Belding Belding Library -85.22682
## 2 Coldwater Halstead House NA
## 3 Bay City old water treatment plant -83.87410
## 4 Allegan Elks Lodge -85.84160
## 5 Albion Albion College -84.74518
data_wide <- data %>%
pivot_wider(names_from = "location",
values_from = "longitude")
data_wide
## # A tibble: 5 × 6
## County `Belding Library` `Halstead House` old water treatment …¹ `Elks Lodge`
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Belding -85.2 NA NA NA
## 2 Coldwa… NA NA NA NA
## 3 Bay Ci… NA NA -83.9 NA
## 4 Allegan NA NA NA -85.8
## 5 Albion NA NA NA NA
## # ℹ abbreviated name: ¹`old water treatment plant`
## # ℹ 1 more variable: `Albion College` <dbl>
data_wide %>%
pivot_longer(cols = `Belding Library`:`Albion College`, values_drop_na = TRUE,
names_to = "location", values_to = "longitude")
## # A tibble: 4 × 3
## County location longitude
## <chr> <chr> <dbl>
## 1 Belding Belding Library -85.2
## 2 Bay City old water treatment plant -83.9
## 3 Allegan Elks Lodge -85.8
## 4 Albion Albion College -84.7
table3_sep <- table3 %>%
separate(col = rate, into = c("location", "longitude"))
table3_sep %>%
unite(col = rate, c("location","longitude"), sep = "/", )
## # A tibble: 6 × 3
## country year rate
## <chr> <dbl> <chr>
## 1 Afghanistan 1999 745/19987071
## 2 Afghanistan 2000 2666/20595360
## 3 Brazil 1999 37737/172006362
## 4 Brazil 2000 80488/174504898
## 5 China 1999 212258/1272915272
## 6 China 2000 213766/1280428583