tidyverse初认识

1 第一题 编写代码

利用nycflights13包的flights数据集是2013年从纽约三大机场(JFK、LGA、EWR)起飞的所有航班的准点数据,共336776条记录。

  • 计算纽约三大机场2013起飞航班数和平均延误时间(可使用group_by, summarise函数)

    flights %>% 
      group_by(origin) %>% 
      summarise(n=n(),delay_m=mean(dep_delay),na.rm=T)
    # A tibble: 3 × 4
      origin      n delay_m na.rm
      <chr>   <int>   <dbl> <lgl>
    1 EWR    120835      NA TRUE 
    2 JFK    111279      NA TRUE 
    3 LGA    104662      NA TRUE 
  • 计算不同航空公司2013从纽约起飞航班数和平均延误时间

    flights %>% 
      group_by(carrier) %>% 
      summarise(n=n(),delay_m=mean(dep_delay)) %>% 
      arrange(desc(n))
    # A tibble: 16 × 3
       carrier     n delay_m
       <chr>   <int>   <dbl>
     1 UA      58665   NA   
     2 B6      54635   NA   
     3 EV      54173   NA   
     4 DL      48110   NA   
     5 AA      32729   NA   
     6 MQ      26397   NA   
     7 US      20536   NA   
     8 9E      18460   NA   
     9 WN      12275   NA   
    10 VX       5162   NA   
    11 FL       3260   NA   
    12 AS        714   NA   
    13 F9        685   NA   
    14 YV        601   NA   
    15 HA        342    4.90
    16 OO         32   NA   
  • 计算纽约三大机场排名前三个目的地和平均飞行距离(可使用group_by, summarise, arrange, slice_max函数)

    flights %>% 
      group_by(origin,dest) %>% 
      summarise(n=n(),dist_m=mean(distance)) %>% 
      slice_max(n,n=3)
    `summarise()` has grouped output by 'origin'. You can override using the
    `.groups` argument.
    # A tibble: 9 × 4
    # Groups:   origin [3]
      origin dest      n dist_m
      <chr>  <chr> <int>  <dbl>
    1 EWR    ORD    6100    719
    2 EWR    BOS    5327    200
    3 EWR    SFO    5127   2565
    4 JFK    LAX   11262   2475
    5 JFK    SFO    8204   2586
    6 JFK    BOS    5898    187
    7 LGA    ATL   10263    762
    8 LGA    ORD    8857    733
    9 LGA    CLT    6168    544

2 第二题 解释代码

  1. 代码含义:使用tibble函数将数据集iris转化成tibble格式,它提供了更友好的打印输出和一些其他特性;将数据集通过管道符传递给下个函数,增加代码的可读性;arrange对该数据集下的变量Species进行排序,across函数对在多个列上应用相同操作。starts_with(“Sepal”)用于选择所有以Sepal开头的列。desc按降序进行排列。

    这段代码的功能是将iris数据集转换为tibble格式,然后按照鸢尾花的种类进行分组,并在每个组内将Sepal相关的列按照降序排列。

    tibble(iris) %>% 
      arrange(Species,across(starts_with("Sepal"), desc))
    # A tibble: 150 × 5
       Sepal.Length Sepal.Width Petal.Length Petal.Width Species
              <dbl>       <dbl>        <dbl>       <dbl> <fct>  
     1          5.8         4            1.2         0.2 setosa 
     2          5.7         4.4          1.5         0.4 setosa 
     3          5.7         3.8          1.7         0.3 setosa 
     4          5.5         4.2          1.4         0.2 setosa 
     5          5.5         3.5          1.3         0.2 setosa 
     6          5.4         3.9          1.7         0.4 setosa 
     7          5.4         3.9          1.3         0.4 setosa 
     8          5.4         3.7          1.5         0.2 setosa 
     9          5.4         3.4          1.7         0.2 setosa 
    10          5.4         3.4          1.5         0.4 setosa 
    # ℹ 140 more rows
  2. 代码含义:starwars是一个数据集,它包含了《星球大战》系列中角色的相关信息。group_by(gender)按变量gender进行分组。filter()用于筛选满足特定条件的行。mass > mean(mass, na.rm = TRUE)是筛选条件。其中, mean(mass, na.rm = TRUE)计算了每个gender组内mass的平均值,na.rm = TRUE表示在计算平均值时忽略缺失值(NA)。

    从starwars数据集中,按照角色的性别进行分组,然后在每个性别组内筛选出体重超过该组平均体重的角色数据。最

    starwars %>% 
      group_by(gender) %>% 
      filter(mass > mean(mass, na.rm = TRUE))
    # A tibble: 15 × 14
    # Groups:   gender [3]
       name    height   mass hair_color skin_color eye_color birth_year sex   gender
       <chr>    <int>  <dbl> <chr>      <chr>      <chr>          <dbl> <chr> <chr> 
     1 Darth …    202  136   none       white      yellow          41.9 male  mascu…
     2 Owen L…    178  120   brown, gr… light      blue            52   male  mascu…
     3 Beru W…    165   75   brown      light      blue            47   fema… femin…
     4 Chewba…    228  112   brown      unknown    blue           200   male  mascu…
     5 Jabba …    175 1358   <NA>       green-tan… orange         600   herm… mascu…
     6 Jek To…    180  110   brown      fair       blue            NA   <NA>  <NA>  
     7 IG-88      200  140   none       metal      red             15   none  mascu…
     8 Bossk      190  113   none       green      red             53   male  mascu…
     9 Ayla S…    178   55   none       blue       hazel           48   fema… femin…
    10 Gregar…    185   85   black      dark       brown           NA   <NA>  <NA>  
    11 Lumina…    170   56.2 black      yellow     blue            58   fema… femin…
    12 Zam We…    168   55   blonde     fair, gre… yellow          NA   fema… femin…
    13 Shaak …    178   57   none       red, blue… black           NA   fema… femin…
    14 Grievo…    216  159   none       brown, wh… green, y…       NA   male  mascu…
    15 Tarfful    234  136   brown      brown      blue            NA   male  mascu…
    # ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
    #   vehicles <list>, starships <list>
  3. 代码含义:首先传入starwars数据集,利用select函数选择变量名为:name, homeworld, species的数据列,mutate用于对数据集的列进行变换,对以上变量除了变量name以外的其余两者转换成因子类型的数据。

    starwars %>%
      select(name, homeworld, species) %>%
      mutate(across(!name, as.factor))
    # A tibble: 87 × 3
       name               homeworld species
       <chr>              <fct>     <fct>  
     1 Luke Skywalker     Tatooine  Human  
     2 C-3PO              Tatooine  Droid  
     3 R2-D2              Naboo     Droid  
     4 Darth Vader        Tatooine  Human  
     5 Leia Organa        Alderaan  Human  
     6 Owen Lars          Tatooine  Human  
     7 Beru Whitesun Lars Tatooine  Human  
     8 R5-D4              Tatooine  Droid  
     9 Biggs Darklighter  Tatooine  Human  
    10 Obi-Wan Kenobi     Stewjon   Human  
    # ℹ 77 more rows
  4. 代码含义:使用tibble函数将数据集mtcars转化成tibble格式,依照vs分组,mutate 函数用于在数据集中添加新的列或修改现有列的值。cut 函数用于将连续的数值变量 hp分割成离散的区间,并且划分为 3 个等宽的区间。将划分后的区间结果存储在一个新的列 hp_cut中。最后再按hp_cut分组。

    tibble(mtcars) %>%
      group_by(vs) %>%
      mutate(hp_cut = cut(hp, 3)) %>%
      group_by(hp_cut)
    # A tibble: 32 × 12
    # Groups:   hp_cut [6]
         mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb hp_cut     
       <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct>      
     1  21       6  160    110  3.9   2.62  16.5     0     1     4     4 (90.8,172] 
     2  21       6  160    110  3.9   2.88  17.0     0     1     4     4 (90.8,172] 
     3  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1 (75.7,99.3]
     4  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1 (99.3,123] 
     5  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2 (172,254]  
     6  18.1     6  225    105  2.76  3.46  20.2     1     0     3     1 (99.3,123] 
     7  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4 (172,254]  
     8  24.4     4  147.    62  3.69  3.19  20       1     0     4     2 (51.9,75.7]
     9  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2 (75.7,99.3]
    10  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4 (99.3,123] 
    # ℹ 22 more rows

3 第三题 查找帮助理解函数

阅读 https://dplyr.tidyverse.org/reference/mutate-joins.html 内容,说明4个数据集链接函数函数的作用。分别举一个实际例子演示并解释其输出结果。

  1. inner_join() :对两个数据集内具有相同变量名的数据进行匹配,从而合并数据。

    grades <- tibble(
      ID = c(1, 2, 3),
      Grade = c(98, 100, 77)
    )
    
    names<- tibble(
      ID = c(1, 2, 4),
      Names = c("Lihua","Jack", "Mark")
    )
    
    inner_join(grades, names, by = "ID")
    # A tibble: 2 × 3
         ID Grade Names
      <dbl> <dbl> <chr>
    1     1    98 Lihua
    2     2   100 Jack 
  2. left_join() :保留左侧数据集的所有行,右侧无匹配时填充 NA

    grades <- tibble(
      ID = c(1, 2, 3),
      Grade = c(98, 100, 77)
    )
    
    names<- tibble(
      ID = c(1, 2, 4),
      Names = c("Lihua","Jack", "Mark")
    )
    
    left_join(grades, names, by = "ID")
    # A tibble: 3 × 3
         ID Grade Names
      <dbl> <dbl> <chr>
    1     1    98 Lihua
    2     2   100 Jack 
    3     3    77 <NA> 
  3. right_join() :保留右侧数据集的所有行,左侧无匹配时填充 NA

    grades <- tibble(
      ID = c(1, 2, 3),
      Grade = c(98, 100, 77)
    )
    
    names<- tibble(
      ID = c(1, 2, 4),
      Names = c("Lihua","Jack", "Mark")
    )
    
    right_join(grades, names, by = "ID")
    # A tibble: 3 × 3
         ID Grade Names
      <dbl> <dbl> <chr>
    1     1    98 Lihua
    2     2   100 Jack 
    3     4    NA Mark 
  4. full_join() :保留两个数据集的所有行(并集),无匹配时填充 NA

    grades <- tibble(
      ID = c(1, 2, 3),
      Grade = c(98, 100, 77)
    )
    
    names<- tibble(
      ID = c(1, 2, 4),
      Names = c("Lihua","Jack", "Mark")
    )
    
    full_join(grades, names, by = "ID")
    # A tibble: 4 × 3
         ID Grade Names
      <dbl> <dbl> <chr>
    1     1    98 Lihua
    2     2   100 Jack 
    3     3    77 <NA> 
    4     4    NA Mark