El método de la transformada inversa es una técnica utilizada para generar valores aleatorios que sigan una distribución específica a partir de números aleatorios uniformes. Es muy útil en simulaciones y generación de datos sintéticos.

Cómo funciona Se genera un número aleatorio entre 0 y 1.

Se usa una función que transforma ese número en otro con la distribución deseada.

Se obtiene el valor generado, que sigue la distribución buscada.

Ejemplo: Distribución Exponencial Si queremos generar valores que sigan una distribución exponencial, tomamos un número aleatorio entre 0 y 1 y lo transformamos usando una ecuación específica. Esto nos da números que siguen el patrón esperado.

Ejemplo: Distribución Normal Para obtener valores con distribución normal, se puede usar un método basado en la transformada inversa llamado Box-Muller, que convierte dos números aleatorios en dos valores con distribución normal.

Ventajas ✅ Método preciso y fácil de implementar para algunas distribuciones. ✅ Útil en simulaciones y modelos estadísticos.

Desventajas ❌ No siempre es fácil encontrar la transformación adecuada. ❌ Para distribuciones complejas, se pueden necesitar métodos alternativos.

Este método es muy usado en estadística, aprendizaje automático y simulaciones de procesos aleatorios.

a <- 317 
c <- 15  
m <- 571
X_n <- 41 # semilla
random.number<-numeric(100) # vector numérico de longitud 50
 for (i in 1:100)
   {X_n<-(a*X_n+c)%%m
   random.number[i]<-X_n/m # números en el intervalo [0,1]
   }
 random.number
##   [1] 0.78809107 0.85113835 0.83712785 0.39579685 0.49387040 0.58318739
##   [7] 0.89667250 0.27145359 0.07705779 0.45359019 0.81436077 0.17863398
##  [13] 0.65323993 0.10332750 0.78108581 0.63047285 0.88616462 0.94045534
##  [19] 0.15061296 0.77057793 0.29947461 0.95971979 0.25744308 0.63572680
##  [25] 0.55166375 0.90367776 0.49211909 0.02802102 0.90893170 0.15761821
##  [31] 0.99124343 0.25043783 0.41506130 0.60070053 0.44833625 0.14886165
##  [37] 0.21541156 0.31173380 0.84588441 0.17162872 0.43257443 0.15236427
##  [43] 0.32574431 0.28721541 0.07355517 0.34325744 0.83887916 0.95096322
##  [49] 0.48161121 0.69702277 0.98248687 0.47460595 0.47635727 0.03152364
##  [55] 0.01926445 0.13309982 0.21891419 0.42206655 0.82136602 0.39929947
##  [61] 0.60420315 0.55866900 0.12434326 0.44308231 0.48336252 0.25218914
##  [67] 0.97022767 0.58844133 0.56217163 0.23467601 0.41856392 0.71103327
##  [73] 0.42381786 0.37653240 0.38704028 0.71803853 0.64448336 0.32749562
##  [79] 0.84238179 0.06129597 0.45709282 0.92469352 0.15411559 0.88091068
##  [85] 0.27495622 0.18739054 0.42907180 0.04203152 0.35026270 0.05954466
##  [91] 0.90192644 0.93695271 0.04028021 0.79509632 0.07180385 0.78809107
##  [97] 0.85113835 0.83712785 0.39579685 0.49387040
# generando una variable exponencial con beta = 3
x <- -3*log(1-random.number)
round(x,1) # redondeando a una cifra decimal
##   [1]  4.7  5.7  5.4  1.5  2.0  2.6  6.8  1.0  0.2  1.8  5.1  0.6  3.2  0.3  4.6
##  [16]  3.0  6.5  8.5  0.5  4.4  1.1  9.6  0.9  3.0  2.4  7.0  2.0  0.1  7.2  0.5
##  [31] 14.2  0.9  1.6  2.8  1.8  0.5  0.7  1.1  5.6  0.6  1.7  0.5  1.2  1.0  0.2
##  [46]  1.3  5.5  9.0  2.0  3.6 12.1  1.9  1.9  0.1  0.1  0.4  0.7  1.6  5.2  1.5
##  [61]  2.8  2.5  0.4  1.8  2.0  0.9 10.5  2.7  2.5  0.8  1.6  3.7  1.7  1.4  1.5
##  [76]  3.8  3.1  1.2  5.5  0.2  1.8  7.8  0.5  6.4  1.0  0.6  1.7  0.1  1.3  0.2
##  [91]  7.0  8.3  0.1  4.8  0.2  4.7  5.7  5.4  1.5  2.0
data.frame(1:length(random.number),random.number,round(x,1))
##     X1.length.random.number. random.number round.x..1.
## 1                          1    0.78809107         4.7
## 2                          2    0.85113835         5.7
## 3                          3    0.83712785         5.4
## 4                          4    0.39579685         1.5
## 5                          5    0.49387040         2.0
## 6                          6    0.58318739         2.6
## 7                          7    0.89667250         6.8
## 8                          8    0.27145359         1.0
## 9                          9    0.07705779         0.2
## 10                        10    0.45359019         1.8
## 11                        11    0.81436077         5.1
## 12                        12    0.17863398         0.6
## 13                        13    0.65323993         3.2
## 14                        14    0.10332750         0.3
## 15                        15    0.78108581         4.6
## 16                        16    0.63047285         3.0
## 17                        17    0.88616462         6.5
## 18                        18    0.94045534         8.5
## 19                        19    0.15061296         0.5
## 20                        20    0.77057793         4.4
## 21                        21    0.29947461         1.1
## 22                        22    0.95971979         9.6
## 23                        23    0.25744308         0.9
## 24                        24    0.63572680         3.0
## 25                        25    0.55166375         2.4
## 26                        26    0.90367776         7.0
## 27                        27    0.49211909         2.0
## 28                        28    0.02802102         0.1
## 29                        29    0.90893170         7.2
## 30                        30    0.15761821         0.5
## 31                        31    0.99124343        14.2
## 32                        32    0.25043783         0.9
## 33                        33    0.41506130         1.6
## 34                        34    0.60070053         2.8
## 35                        35    0.44833625         1.8
## 36                        36    0.14886165         0.5
## 37                        37    0.21541156         0.7
## 38                        38    0.31173380         1.1
## 39                        39    0.84588441         5.6
## 40                        40    0.17162872         0.6
## 41                        41    0.43257443         1.7
## 42                        42    0.15236427         0.5
## 43                        43    0.32574431         1.2
## 44                        44    0.28721541         1.0
## 45                        45    0.07355517         0.2
## 46                        46    0.34325744         1.3
## 47                        47    0.83887916         5.5
## 48                        48    0.95096322         9.0
## 49                        49    0.48161121         2.0
## 50                        50    0.69702277         3.6
## 51                        51    0.98248687        12.1
## 52                        52    0.47460595         1.9
## 53                        53    0.47635727         1.9
## 54                        54    0.03152364         0.1
## 55                        55    0.01926445         0.1
## 56                        56    0.13309982         0.4
## 57                        57    0.21891419         0.7
## 58                        58    0.42206655         1.6
## 59                        59    0.82136602         5.2
## 60                        60    0.39929947         1.5
## 61                        61    0.60420315         2.8
## 62                        62    0.55866900         2.5
## 63                        63    0.12434326         0.4
## 64                        64    0.44308231         1.8
## 65                        65    0.48336252         2.0
## 66                        66    0.25218914         0.9
## 67                        67    0.97022767        10.5
## 68                        68    0.58844133         2.7
## 69                        69    0.56217163         2.5
## 70                        70    0.23467601         0.8
## 71                        71    0.41856392         1.6
## 72                        72    0.71103327         3.7
## 73                        73    0.42381786         1.7
## 74                        74    0.37653240         1.4
## 75                        75    0.38704028         1.5
## 76                        76    0.71803853         3.8
## 77                        77    0.64448336         3.1
## 78                        78    0.32749562         1.2
## 79                        79    0.84238179         5.5
## 80                        80    0.06129597         0.2
## 81                        81    0.45709282         1.8
## 82                        82    0.92469352         7.8
## 83                        83    0.15411559         0.5
## 84                        84    0.88091068         6.4
## 85                        85    0.27495622         1.0
## 86                        86    0.18739054         0.6
## 87                        87    0.42907180         1.7
## 88                        88    0.04203152         0.1
## 89                        89    0.35026270         1.3
## 90                        90    0.05954466         0.2
## 91                        91    0.90192644         7.0
## 92                        92    0.93695271         8.3
## 93                        93    0.04028021         0.1
## 94                        94    0.79509632         4.8
## 95                        95    0.07180385         0.2
## 96                        96    0.78809107         4.7
## 97                        97    0.85113835         5.7
## 98                        98    0.83712785         5.4
## 99                        99    0.39579685         1.5
## 100                      100    0.49387040         2.0
hist(x, breaks = 20, probability = TRUE, col = "lightblue", ylim=c(0,0.35),  main = "Distribución Exponencial (beta = 3)",     xlab = "Valor de X")

# Añadimos la función de densidad teórica de la distribución exponencial
curve(dexp(x,rate=1/3), col = "red", lwd = 2, add = TRUE)

Simulando variables aleatorias con funciones propias de R.

  1. Generando la variable aleatoria uniforme .
# Generar 100 variables aleatorias uniformes entre 0 y 1
uniform_random_01 <- runif(100, min = 0, max = 1)
uniform_random_01
##   [1] 0.187800324 0.678933652 0.983560350 0.836231958 0.554945634 0.432686412
##   [7] 0.053446172 0.014028115 0.620551567 0.798937683 0.259579489 0.583548273
##  [13] 0.489146732 0.425294555 0.772811125 0.027597266 0.810528983 0.884446871
##  [19] 0.648888037 0.107863338 0.027925896 0.348613390 0.282566062 0.482717508
##  [25] 0.010585883 0.105043612 0.885011879 0.461450587 0.190521249 0.582020857
##  [31] 0.347706803 0.595767130 0.356972779 0.540108320 0.230961598 0.396991348
##  [37] 0.135998984 0.330765889 0.395530000 0.168805326 0.588698893 0.647039524
##  [43] 0.825480354 0.387789299 0.328956581 0.978818344 0.135065990 0.970749492
##  [49] 0.995479023 0.478043076 0.743418451 0.421785594 0.035944714 0.626942612
##  [55] 0.539747376 0.961563723 0.044873537 0.996627163 0.502048726 0.661303609
##  [61] 0.335526318 0.455203756 0.755372882 0.086512601 0.596914890 0.002091655
##  [67] 0.296105014 0.085699617 0.739668541 0.758320206 0.720865519 0.429724924
##  [73] 0.976450042 0.186776350 0.111228598 0.913508679 0.284726030 0.141505663
##  [79] 0.631475094 0.152815105 0.667883561 0.824401141 0.960049729 0.078106425
##  [85] 0.963575684 0.421773994 0.011585660 0.266479999 0.994147774 0.572711154
##  [91] 0.646440422 0.106139833 0.774584377 0.494526081 0.116066806 0.094824870
##  [97] 0.082430677 0.769763044 0.656792375 0.278724742
  1. Generando una variable aleatoria de una distribución normal.
# Generar 100 variables normales con media 30 y desviación estándar 3.5
set.seed(123)
normal_random <- rnorm(100, mean = 30, sd = 3.5)
normal_random
##   [1] 28.03834 29.19438 35.45548 30.24678 30.45251 36.00273 31.61321 25.57229
##   [9] 27.59602 28.44018 34.28429 31.25935 31.40270 30.38739 28.05456 36.25420
##  [17] 31.74248 23.11684 32.45475 28.34523 26.26262 29.23709 26.40898 27.44888
##  [25] 27.81236 24.09657 32.93225 30.53681 26.01652 34.38835 31.49262 28.96725
##  [33] 33.13294 33.07347 32.87553 32.41024 31.93871 29.78331 28.92913 28.66835
##  [41] 27.56853 29.27229 25.57111 37.59135 34.22787 26.06912 28.58990 28.36671
##  [49] 32.72988 29.70821 30.88661 29.90009 29.84995 34.79011 29.20980 35.30765
##  [57] 24.57937 32.04615 30.43349 30.75580 31.32874 28.24187 28.83377 26.43499
##  [65] 26.24873 31.06235 31.56873 30.18551 33.22794 37.17530 28.28139 21.91791
##  [73] 33.52008 27.51780 27.59197 33.58950 29.00329 25.72749 30.63456 29.51388
##  [81] 30.02017 31.34848 28.70269 32.25532 29.22830 31.16124 33.83894 31.52314
##  [89] 28.85924 34.02083 33.47726 31.91939 30.83556 27.80233 34.76228 27.89909
##  [97] 37.65567 35.36414 29.17505 26.40753
hist(normal_random,col=3,main="Gráfico de la normal",xlim=c(15,45))

  1. Generando Variable aleatoria de una exponencial.

Para generar variables aleatorias con distribución exponencial con parámetro β . Ejemplo:

Simular El tiempo de servicio en una caja de un banco cuyo comportamiento sigue una forma exponencial con media de 3 minutos/cliente

numexp <- rexp(100,1/3)
round(numexp,1)
##   [1]  5.4  0.1  3.9  0.6  5.3  5.3  2.5  1.0  9.9  1.2  3.3  4.0  1.9  0.6  1.4
##  [16]  1.1 10.4  3.8  3.2  0.9  0.3  8.9  5.9  2.0  4.8  1.8  0.3  1.0  5.3  0.8
##  [31]  2.8  1.3  3.9  0.5  4.7  0.2  1.7  5.2  3.9  3.9  1.4  0.1  0.5  3.1  3.2
##  [46] 11.2  0.0  0.0  5.1  1.6  1.4  0.2  1.6  4.4  3.8  4.3  6.4  4.3  2.7  8.1
##  [61]  6.7  1.6  0.2  1.7 13.1  1.7  1.4  0.8  2.1  2.9  2.2  3.3  1.8  2.0  4.9
##  [76]  0.3  1.2  8.2  8.6  0.1  1.4  2.0  2.9  3.4  0.2  4.9  0.5  4.4  0.3  0.7
##  [91]  2.0  4.6  5.8  0.6  1.7  5.8 10.8  4.0  2.8  0.9
  1. Generando variable aleatoria de una Binomial.
binom_random <- rbinom(100,12,0.25)
binom_random
##   [1] 6 4 2 2 6 3 4 2 4 3 5 2 2 1 2 6 2 4 4 1 2 2 1 1 7 7 1 5 3 3 3 4 1 2 4 2 4
##  [38] 2 3 2 2 6 2 3 0 3 3 3 2 5 3 2 2 2 5 6 3 2 7 2 3 1 3 1 2 2 3 4 2 5 4 4 1 2
##  [75] 4 3 2 2 1 2 5 4 4 1 1 6 3 3 2 3 2 2 4 2 4 1 4 3 4 4
  1. Generando variables aleatorias una poisson.
evento_pois <- rpois(100,5)

tablapois <- table(evento_pois)
tablapois
## evento_pois
##  0  1  2  3  4  5  6  7  8  9 10 11 
##  1  4 10  8 19 17 14 14  5  5  1  2
evento_pois
##   [1]  5  6  0  3  6  3  7  4  6  9  2  3  6  4  7 10  2  5  6  2 11  3  2  6  7
##  [26]  4  4  4  2  4  3  5  5  9  4  5  2  7  4  6  3  5  7  2  7  4  4  4  1  5
##  [51]  6  8  1 11  4  9  6  5  7  1  6  4  7  5  4  7  2  7  4  6  9  2  7  7  4
##  [76]  4  3  5  8  5  5  6  5  5  1  2  8  7  3  6  6  4  7  5  8  5  8  5  4  9