Save And Finalize Your trained Model

A simple linear regression model

setwd("C:\\Users\\hed2\\Downloads\\dell\\code-storage\\code")
set.seed(100)

# Train a sample model
model <- lm(mpg ~ wt + hp, data = mtcars)
# Save the model to a file
saveRDS(model, file = "linear_model.rds")
# Load the model from the file
model_save <- readRDS("linear_model.rds")
# The model is now available in the environment
summary(model_save)
## 
## Call:
## lm(formula = mpg ~ wt + hp, data = mtcars)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.941 -1.600 -0.182  1.050  5.854 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 37.22727    1.59879  23.285  < 2e-16 ***
## wt          -3.87783    0.63273  -6.129 1.12e-06 ***
## hp          -0.03177    0.00903  -3.519  0.00145 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.593 on 29 degrees of freedom
## Multiple R-squared:  0.8268, Adjusted R-squared:  0.8148 
## F-statistic: 69.21 on 2 and 29 DF,  p-value: 9.109e-12
predict(model_save,mtcars)
##           Mazda RX4       Mazda RX4 Wag          Datsun 710      Hornet 4 Drive 
##           23.572329           22.583483           25.275819           21.265020 
##   Hornet Sportabout             Valiant          Duster 360           Merc 240D 
##           18.327267           20.473816           15.599042           22.887067 
##            Merc 230            Merc 280           Merc 280C          Merc 450SE 
##           21.993673           19.979460           19.979460           15.725369 
##          Merc 450SL         Merc 450SLC  Cadillac Fleetwood Lincoln Continental 
##           17.043831           16.849939           10.355205            9.362733 
##   Chrysler Imperial            Fiat 128         Honda Civic      Toyota Corolla 
##            9.192487           26.599028           29.312380           28.046209 
##       Toyota Corona    Dodge Challenger         AMC Javelin          Camaro Z28 
##           24.586441           18.811364           19.140979           14.552028 
##    Pontiac Firebird           Fiat X1-9       Porsche 914-2        Lotus Europa 
##           16.756745           27.626653           26.037374           27.769769 
##      Ford Pantera L        Ferrari Dino       Maserati Bora          Volvo 142E 
##           16.546489           20.925413           12.739477           22.983649

Random forest model

# Install and load caret package
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
# Train a sample model using caret
model_rf <- train(mpg ~ ., data = mtcars, method = "rf")
# Save the model to a file
saveRDS(model_rf, file = "caret_model.rds")
# Load the model from the file
model_save_cr <- readRDS("caret_model.rds")
# The model is now available in the environment
summary(model_save_cr)
##                 Length Class      Mode     
## call              4    -none-     call     
## type              1    -none-     character
## predicted        32    -none-     numeric  
## mse             500    -none-     numeric  
## rsq             500    -none-     numeric  
## oob.times        32    -none-     numeric  
## importance       10    -none-     numeric  
## importanceSD      0    -none-     NULL     
## localImportance   0    -none-     NULL     
## proximity         0    -none-     NULL     
## ntree             1    -none-     numeric  
## mtry              1    -none-     numeric  
## forest           11    -none-     list     
## coefs             0    -none-     NULL     
## y                32    -none-     numeric  
## test              0    -none-     NULL     
## inbag             0    -none-     NULL     
## xNames           10    -none-     character
## problemType       1    -none-     character
## tuneValue         1    data.frame list     
## obsLevels         1    -none-     logical  
## param             0    -none-     list
predict(model_save_cr,mtcars) 
##           Mazda RX4       Mazda RX4 Wag          Datsun 710      Hornet 4 Drive 
##            20.85935            20.85476            24.07758            20.20637 
##   Hornet Sportabout             Valiant          Duster 360           Merc 240D 
##            17.67140            18.84439            14.74875            23.55262 
##            Merc 230            Merc 280           Merc 280C          Merc 450SE 
##            22.72140            18.74571            18.67910            16.27976 
##          Merc 450SL         Merc 450SLC  Cadillac Fleetwood Lincoln Continental 
##            16.43029            15.94993            11.67749            11.29731 
##   Chrysler Imperial            Fiat 128         Honda Civic      Toyota Corolla 
##            13.83365            30.36074            30.54158            31.37035 
##       Toyota Corona    Dodge Challenger         AMC Javelin          Camaro Z28 
##            22.56693            16.17739            16.50366            14.35079 
##    Pontiac Firebird           Fiat X1-9       Porsche 914-2        Lotus Europa 
##            17.62237            29.46931            26.20460            28.28629 
##      Ford Pantera L        Ferrari Dino       Maserati Bora          Volvo 142E 
##            15.77033            19.95253            14.90183            22.02844