Develop an R program to quickly explore a given dataset, including categorical analysis using the group_by command, and visualize the findings using ggplot2 features.
Step 1: Load necessary libraries
library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.4 ✔ readr 2.1.5
✔ forcats 1.0.0 ✔ stringr 1.5.1
✔ ggplot2 3.5.1 ✔ tibble 3.2.1
✔ lubridate 1.9.4 ✔ tidyr 1.3.1
✔ purrr 1.0.4
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(dplyr)
Step 2: Load the dataset
# Load dataset data <- mtcars # Convert 'cyl' to a factor for categorical analysis data$cyl <-as.factor(data$cyl)
Step 3: Group by categorical variables
# Summarize average mpg by cylinder category summary_data <- data %>%group_by(cyl) %>%summarise(avg_mpg =mean(mpg), .groups ='drop') # Display summary print(summary_data)
# Create a bar plot using ggplot2ggplot(summary_data, aes(x = cyl, y = avg_mpg, fill = cyl)) +geom_bar(stat ="identity") +labs(title ="Average MPG by Cylinder Count",x ="Number of Cylinders",y ="Average MPG") +theme_minimal()