4. Enrichment Analysis-All_Pathways
# Load necessary libraries
library(clusterProfiler)
library(org.Hs.eg.db)
library(enrichplot)
library(ReactomePA)
library(DOSE) # For GSEA analysis
library(ggplot2) # Ensure ggplot2 is available for plotting
library(dplyr)
# Define the output folder where the results will be saved
output_folder <- "NK_Proliferating_vs_Control/"
Malignant_CD4Tcells_vs_Normal_CD4Tcells <- df
# Create the output folder if it doesn't exist
if (!dir.exists(output_folder)) {
dir.create(output_folder)
}
# Define the number of upregulated and downregulated genes to select
UP_genes <- 100
Down_genes <- 100
# Define threshold for differential expression selection (modified thresholds)
logFC_up_threshold <- 4 # Upregulated logFC threshold
logFC_down_threshold <- -4 # Downregulated logFC threshold
# Load your differential expression results (modify based on actual data structure)
# Malignant_CD4Tcells_vs_Normal_CD4Tcells <- read.csv("Your_DE_Results_File.csv")
# Filter the genes based on avg_log2FC and arrange by p_val_adj
filtered_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells %>%
filter(avg_log2FC > logFC_up_threshold | avg_log2FC < logFC_down_threshold) %>%
arrange(p_val_adj)
# Separate upregulated and downregulated genes
upregulated_genes <- filtered_genes %>%
filter(avg_log2FC > logFC_up_threshold)
downregulated_genes <- filtered_genes %>%
filter(avg_log2FC < logFC_down_threshold)
# Check if there are fewer than the specified number of upregulated genes
if (nrow(upregulated_genes) < UP_genes) {
top_upregulated_genes <- upregulated_genes
cat("Number of upregulated genes selected:", nrow(top_upregulated_genes), "\n")
cat("p_val_adj value for the last selected upregulated gene:", tail(top_upregulated_genes$p_val_adj, 1), "\n")
} else {
# Select the specified number of upregulated genes
top_upregulated_genes <- upregulated_genes %>%
head(UP_genes)
cat("Number of upregulated genes selected:", nrow(top_upregulated_genes), "\n")
cat("p_val_adj value for the last selected upregulated gene:", tail(top_upregulated_genes$p_val_adj, 1), "\n")
}
Number of upregulated genes selected: 100
p_val_adj value for the last selected upregulated gene: 0
# Check if there are fewer than the specified number of downregulated genes
if (nrow(downregulated_genes) < Down_genes) {
top_downregulated_genes <- downregulated_genes
cat("Number of downregulated genes selected:", nrow(top_downregulated_genes), "\n")
cat("p_val_adj value for the last selected downregulated gene:", tail(top_downregulated_genes$p_val_adj, 1), "\n")
} else {
# Select the specified number of downregulated genes
top_downregulated_genes <- downregulated_genes %>%
head(Down_genes)
cat("Number of downregulated genes selected:", nrow(top_downregulated_genes), "\n")
cat("p_val_adj value for the last selected downregulated gene:", tail(top_downregulated_genes$p_val_adj, 1), "\n")
}
Number of downregulated genes selected: 81
p_val_adj value for the last selected downregulated gene: 5.664039e-83
# Combine the top upregulated and downregulated genes
top_genes <- bind_rows(top_upregulated_genes, top_downregulated_genes)
# Check for missing genes (NAs) in the gene column and remove them
top_genes <- na.omit(top_genes)
# Save upregulated and downregulated gene results to CSV
write.csv(top_upregulated_genes, paste0(output_folder, "upregulated_genes.csv"), row.names = FALSE)
write.csv(top_downregulated_genes, paste0(output_folder, "downregulated_genes.csv"), row.names = FALSE)
# Convert gene symbols to Entrez IDs for enrichment analysis, with checks for missing values
upregulated_entrez <- bitr(top_upregulated_genes$gene, fromType = "SYMBOL", toType = "ENTREZID", OrgDb = org.Hs.eg.db)
'select()' returned 1:1 mapping between keys and columns
Warning: 4% of input gene IDs are fail to map...
downregulated_entrez <- bitr(top_downregulated_genes$gene, fromType = "SYMBOL", toType = "ENTREZID", OrgDb = org.Hs.eg.db)
'select()' returned 1:1 mapping between keys and columns
Warning: 3.7% of input gene IDs are fail to map...
# Check for missing Entrez IDs and retain gene names
missing_upregulated <- top_upregulated_genes$gene[!top_upregulated_genes$gene %in% upregulated_entrez$SYMBOL]
missing_downregulated <- top_downregulated_genes$gene[!top_downregulated_genes$gene %in% downregulated_entrez$SYMBOL]
# Print out the missing gene symbols for debugging
cat("Missing upregulated genes:\n", missing_upregulated, "\n")
Missing upregulated genes:
WDR34 HIST1H1B HIST1H1A HIST1H3B
cat("Missing downregulated genes:\n", missing_downregulated, "\n")
Missing downregulated genes:
AC139720.1 AC245407.2 C5orf17
# Merge the Entrez IDs back with the original data frames to retain gene names
top_upregulated_genes <- merge(top_upregulated_genes, upregulated_entrez, by.x = "gene", by.y = "SYMBOL", all.x = TRUE)
top_downregulated_genes <- merge(top_downregulated_genes, downregulated_entrez, by.x = "gene", by.y = "SYMBOL", all.x = TRUE)
# Remove genes that couldn't be mapped to Entrez IDs
top_upregulated_genes <- top_upregulated_genes[!is.na(top_upregulated_genes$ENTREZID), ]
top_downregulated_genes <- top_downregulated_genes[!is.na(top_downregulated_genes$ENTREZID), ]
# Extract Entrez IDs for enrichment analysis
upregulated_entrez <- top_upregulated_genes$ENTREZID
downregulated_entrez <- top_downregulated_genes$ENTREZID
# Define a function to safely run enrichment, plot results, and save them
safe_enrichGO <- function(gene_list, title, filename) {
if (length(gene_list) > 0) {
result <- enrichGO(gene = gene_list, OrgDb = org.Hs.eg.db, keyType = "SYMBOL",
ont = "BP", pAdjustMethod = "BH", pvalueCutoff = 0.05, readable = TRUE)
if (!is.null(result) && nrow(as.data.frame(result)) > 0) {
p <- dotplot(result, showCategory = 10, title = title)
print(p)
ggsave(paste0(output_folder, gsub(".csv", "_dotplot.png", filename)), plot = p, width = 8, height = 6)
write.csv(as.data.frame(result), file = paste0(output_folder, filename), row.names = FALSE)
} else {
message(paste("No significant enrichment found for:", title))
}
} else {
message(paste("No genes found for:", title))
}
}
safe_enrichKEGG <- function(entrez_list, title, filename) {
if (length(entrez_list) > 0) {
result <- enrichKEGG(gene = entrez_list, organism = "hsa", pvalueCutoff = 0.05)
if (!is.null(result) && nrow(as.data.frame(result)) > 0) {
result <- setReadable(result, OrgDb = org.Hs.eg.db, keyType = "ENTREZID")
p <- dotplot(result, showCategory = 10, title = title)
print(p)
ggsave(paste0(output_folder, gsub(".csv", "_dotplot.png", filename)), plot = p, width = 8, height = 6)
write.csv(as.data.frame(result), file = paste0(output_folder, filename), row.names = FALSE)
} else {
message(paste("No significant KEGG pathways found for:", title))
}
} else {
message(paste("No genes found for:", title))
}
}
safe_enrichReactome <- function(entrez_list, title, filename) {
if (length(entrez_list) > 0) {
result <- enrichPathway(gene = entrez_list, organism = "human", pvalueCutoff = 0.05)
if (!is.null(result) && nrow(as.data.frame(result)) > 0) {
result <- setReadable(result, OrgDb = org.Hs.eg.db, keyType = "ENTREZID")
p <- dotplot(result, showCategory = 10, title = title)
print(p)
ggsave(paste0(output_folder, gsub(".csv", "_dotplot.png", filename)), plot = p, width = 8, height = 6)
write.csv(as.data.frame(result), file = paste0(output_folder, filename), row.names = FALSE)
} else {
message(paste("No significant Reactome pathways found for:", title))
}
} else {
message(paste("No genes found for:", title))
}
}
# Perform enrichment analyses, generate plots, and save results
safe_enrichGO(top_upregulated_genes$gene, "GO Enrichment for Upregulated Genes", "upregulated_GO_results.csv")

safe_enrichGO(top_downregulated_genes$gene, "GO Enrichment for Downregulated Genes", "downregulated_GO_results.csv")

safe_enrichKEGG(upregulated_entrez, "KEGG Pathway Enrichment for Upregulated Genes", "upregulated_KEGG_results.csv")
Reading KEGG annotation online: "https://rest.kegg.jp/link/hsa/pathway"...
Reading KEGG annotation online: "https://rest.kegg.jp/list/pathway/hsa"...

safe_enrichKEGG(downregulated_entrez, "KEGG Pathway Enrichment for Downregulated Genes", "downregulated_KEGG_results.csv")

safe_enrichReactome(upregulated_entrez, "Reactome Pathway Enrichment for Upregulated Genes", "upregulated_Reactome_results.csv")

safe_enrichReactome(downregulated_entrez, "Reactome Pathway Enrichment for Downregulated Genes", "downregulated_Reactome_results.csv")
No significant Reactome pathways found for: Reactome Pathway Enrichment for Downregulated Genes
Enrichment Analysis_Hallmark
# Load necessary libraries
library(clusterProfiler)
library(org.Hs.eg.db)
library(msigdbr)
library(enrichplot)
library(ggplot2)
library(dplyr)
# Define the output folder where the results will be saved
output_folder <- "NK_Proliferating_vs_Control/"
# Create the output folder if it doesn't exist
if (!dir.exists(output_folder)) {
dir.create(output_folder)
}
# Load Hallmark gene sets from msigdbr
hallmark_sets <- msigdbr(species = "Homo sapiens", collection = "H") # "H" is for Hallmark gene sets
# Convert gene symbols to uppercase for consistency
top_upregulated_genes$gene <- toupper(top_upregulated_genes$gene)
top_downregulated_genes$gene <- toupper(top_downregulated_genes$gene)
# Check for overlap between your upregulated/downregulated genes and Hallmark gene sets
upregulated_in_hallmark <- intersect(top_upregulated_genes$gene, hallmark_sets$gene_symbol)
downregulated_in_hallmark <- intersect(top_downregulated_genes$gene, hallmark_sets$gene_symbol)
# Print the number of overlapping genes for both upregulated and downregulated genes
cat("Number of upregulated genes in Hallmark gene sets:", length(upregulated_in_hallmark), "\n")
Number of upregulated genes in Hallmark gene sets: 54
cat("Number of downregulated genes in Hallmark gene sets:", length(downregulated_in_hallmark), "\n")
Number of downregulated genes in Hallmark gene sets: 28
# If there are genes to analyze, proceed with enrichment analysis
if (length(upregulated_in_hallmark) > 0) {
# Perform enrichment analysis for upregulated genes using Hallmark gene sets
hallmark_up <- enricher(gene = upregulated_in_hallmark,
TERM2GENE = hallmark_sets[, c("gs_name", "gene_symbol")], # Ensure TERM2GENE uses correct columns
pvalueCutoff = 0.05)
# Check if results exist
if (!is.null(hallmark_up) && nrow(hallmark_up) > 0) {
# Visualize results if available
up_dotplot <- dotplot(hallmark_up, showCategory = 20, title = "Hallmark Pathway Enrichment for Upregulated Genes")
# Display the plot in the notebook
print(up_dotplot)
# Save the dotplot to a PNG file
ggsave(paste0(output_folder, "hallmark_upregulated_dotplot.png"), plot = up_dotplot, width = 10, height = 8)
# Optionally, save the results as CSV
write.csv(as.data.frame(hallmark_up), file = paste0(output_folder, "hallmark_upregulated_enrichment.csv"), row.names = FALSE)
} else {
cat("No significant enrichment found for upregulated genes.\n")
}
} else {
cat("No upregulated genes overlap with Hallmark gene sets.\n")
}

if (length(downregulated_in_hallmark) > 0) {
# Perform enrichment analysis for downregulated genes using Hallmark gene sets
hallmark_down <- enricher(gene = downregulated_in_hallmark,
TERM2GENE = hallmark_sets[, c("gs_name", "gene_symbol")], # Ensure TERM2GENE uses correct columns
pvalueCutoff = 0.05)
# Check if results exist
if (!is.null(hallmark_down) && nrow(hallmark_down) > 0) {
# Visualize results if available
down_dotplot <- dotplot(hallmark_down, showCategory = 20, title = "Hallmark Pathway Enrichment for Downregulated Genes")
# Display the plot in the notebook
print(down_dotplot)
# Save the dotplot to a PNG file
ggsave(paste0(output_folder, "hallmark_downregulated_dotplot.png"), plot = down_dotplot, width = 10, height = 8)
# Optionally, save the results as CSV
write.csv(as.data.frame(hallmark_down), file = paste0(output_folder, "hallmark_downregulated_enrichment.csv"), row.names = FALSE)
} else {
cat("No significant enrichment found for downregulated genes.\n")
}
} else {
cat("No downregulated genes overlap with Hallmark gene sets.\n")
}

NA
NA
LS0tCnRpdGxlOiAiTksgUHJvbGlmZXJhdGluZyB2cyBDb250cm9sX2ZpbHRyZWRfb25fbWVhbiIKYXV0aG9yOiBOYXNpciBNYWhtb29kIEFiYmFzaQpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiCm91dHB1dDoKICAjIHBkZl9kb2N1bWVudDogZGVmYXVsdAogICMgd29yZF9kb2N1bWVudDogZGVmYXVsdAogICMgaHRtbF9kb2N1bWVudDogZGVmYXVsdAogICNybWRmb3JtYXRzOjpyZWFkdGhlZG93bgogIGh0bWxfbm90ZWJvb2s6CiAgICB0b2M6IHRydWUKICAgIHRvY19mbG9hdDogdHJ1ZQogICAgdG9jX2NvbGxhcHNlZDogdHJ1ZQotLS0KCiMgMS4gbG9hZCBsaWJyYXJpZXMKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CgojIExvYWQgbGlicmFyaWVzCmxpYnJhcnkoU2V1cmF0KQpsaWJyYXJ5KE1hdHJpeCkKbGlicmFyeShnZ3Bsb3QyKQpsaWJyYXJ5KGRwbHlyKQpsaWJyYXJ5KGdncmVwZWwpCmxpYnJhcnkodGliYmxlKQoKCmBgYAoKIyAyLiBMb2FkIHRoZSBmaWx0ZXJlZCBsaXN0IG9uIG1lYW4gZXhwcmVzc2lvbgpgYGB7ciAsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEwfQoKIyBMb2FkIHRoZSBERSByZXN1bHRzIGZyb20gQ1NWCmRmIDwtIHJlYWQuY3N2KCIzLVJOQV9OS19Qcm9saWZfdnNfQ29udHJvbF9GaWx0ZXJlZF9ieV9NZWFuRXhwLmNzdiIsIHN0cmluZ3NBc0ZhY3RvcnMgPSBGQUxTRSkKCgpERV9yZXN1bHRzX2RmIDwtIGRmCgoKbWFya2VycyA8LSBERV9yZXN1bHRzX2RmCmBgYAoKIyAzLiBWb2xjYW5vIFBsb3RzCmBgYHtyICwgZmlnLmhlaWdodD0xMiwgZmlnLndpZHRoPTE2fQoKbGlicmFyeShkcGx5cikKbGlicmFyeShFbmhhbmNlZFZvbGNhbm8pCgojIEFzc3VtaW5nIHlvdSBoYXZlIGEgZGF0YSBmcmFtZSBuYW1lZCBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMKIyBGaWx0ZXIgZ2VuZXMgYmFzZWQgb24gbG93ZXN0IHAtdmFsdWVzIGJ1dCBpbmNsdWRlIGFsbCBnZW5lcwpmaWx0ZXJlZF9nZW5lcyA8LSBtYXJrZXJzICU+JQogIGFycmFuZ2UocF92YWxfYWRqLCBkZXNjKGFicyhhdmdfbG9nMkZDKSkpCgojIENyZWF0ZSB0aGUgRW5oYW5jZWRWb2xjYW5vIHBsb3Qgd2l0aCB0aGUgZmlsdGVyZWQgZGF0YQpFbmhhbmNlZFZvbGNhbm8oCiAgZmlsdGVyZWRfZ2VuZXMsIAogIGxhYiA9IGlmZWxzZShmaWx0ZXJlZF9nZW5lcyRwX3ZhbF9hZGogPD0gMWUtNiAmIGFicyhmaWx0ZXJlZF9nZW5lcyRhdmdfbG9nMkZDKSA+PSAxLjUsIGZpbHRlcmVkX2dlbmVzJGdlbmUsIE5BKSwKICB4ID0gImF2Z19sb2cyRkMiLCAKICB5ID0gInBfdmFsX2FkaiIsCiAgdGl0bGUgPSAiTWFsaWduYW50IENENCBUIGNlbGxzKGNlbGwgbGluZXMpIHZzIG5vcm1hbCBDRDQgVCBjZWxscyIsCiAgcEN1dG9mZiA9IDFlLTYsCiAgRkNjdXRvZmYgPSAxLjAsCiAgbGVnZW5kUG9zaXRpb24gPSAncmlnaHQnLCAKICBsYWJDb2wgPSAnYmxhY2snLAogIGxhYkZhY2UgPSAnYm9sZCcsCiAgYm94ZWRMYWJlbHMgPSBGQUxTRSwgICMgU2V0IHRvIEZBTFNFIHRvIHJlbW92ZSBib3hlZCBsYWJlbHMKICBwb2ludFNpemUgPSAzLjAsCiAgbGFiU2l6ZSA9IDUuMCwKICBjb2wgPSBjKCdncmV5NzAnLCAnYmxhY2snLCAnYmx1ZScsICdyZWQnKSwgICMgQ3VzdG9taXplIHBvaW50IGNvbG9ycwogIHNlbGVjdExhYiA9IGZpbHRlcmVkX2dlbmVzJGdlbmVbZmlsdGVyZWRfZ2VuZXMkcF92YWxfYWRqIDw9IDAuMDUgJiBhYnMoZmlsdGVyZWRfZ2VuZXMkYXZnX2xvZzJGQykgPj0gMS4wXSAgIyBPbmx5IGxhYmVsIHNpZ25pZmljYW50IGdlbmVzCikKCgoKYGBgCgoKIyA0LiBFbnJpY2htZW50IEFuYWx5c2lzLUFsbF9QYXRod2F5cwpgYGB7ciAsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEyfQojIExvYWQgbmVjZXNzYXJ5IGxpYnJhcmllcwpsaWJyYXJ5KGNsdXN0ZXJQcm9maWxlcikKbGlicmFyeShvcmcuSHMuZWcuZGIpCmxpYnJhcnkoZW5yaWNocGxvdCkKbGlicmFyeShSZWFjdG9tZVBBKQpsaWJyYXJ5KERPU0UpICMgRm9yIEdTRUEgYW5hbHlzaXMKbGlicmFyeShnZ3Bsb3QyKSAjIEVuc3VyZSBnZ3Bsb3QyIGlzIGF2YWlsYWJsZSBmb3IgcGxvdHRpbmcKbGlicmFyeShkcGx5cikKCiMgRGVmaW5lIHRoZSBvdXRwdXQgZm9sZGVyIHdoZXJlIHRoZSByZXN1bHRzIHdpbGwgYmUgc2F2ZWQKb3V0cHV0X2ZvbGRlciA8LSAiTktfUHJvbGlmZXJhdGluZ192c19Db250cm9sLyIKCk1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyA8LSBkZgoKIyBDcmVhdGUgdGhlIG91dHB1dCBmb2xkZXIgaWYgaXQgZG9lc24ndCBleGlzdAppZiAoIWRpci5leGlzdHMob3V0cHV0X2ZvbGRlcikpIHsKICBkaXIuY3JlYXRlKG91dHB1dF9mb2xkZXIpCn0KCiMgRGVmaW5lIHRoZSBudW1iZXIgb2YgdXByZWd1bGF0ZWQgYW5kIGRvd25yZWd1bGF0ZWQgZ2VuZXMgdG8gc2VsZWN0ClVQX2dlbmVzIDwtIDEwMApEb3duX2dlbmVzIDwtIDEwMAoKIyBEZWZpbmUgdGhyZXNob2xkIGZvciBkaWZmZXJlbnRpYWwgZXhwcmVzc2lvbiBzZWxlY3Rpb24gKG1vZGlmaWVkIHRocmVzaG9sZHMpCmxvZ0ZDX3VwX3RocmVzaG9sZCA8LSA0ICAgICAgICAgICMgVXByZWd1bGF0ZWQgbG9nRkMgdGhyZXNob2xkCmxvZ0ZDX2Rvd25fdGhyZXNob2xkIDwtIC00ICAgICAgICAgIyBEb3ducmVndWxhdGVkIGxvZ0ZDIHRocmVzaG9sZAoKIyBMb2FkIHlvdXIgZGlmZmVyZW50aWFsIGV4cHJlc3Npb24gcmVzdWx0cyAobW9kaWZ5IGJhc2VkIG9uIGFjdHVhbCBkYXRhIHN0cnVjdHVyZSkKIyBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMgPC0gcmVhZC5jc3YoIllvdXJfREVfUmVzdWx0c19GaWxlLmNzdiIpCgojIEZpbHRlciB0aGUgZ2VuZXMgYmFzZWQgb24gYXZnX2xvZzJGQyBhbmQgYXJyYW5nZSBieSBwX3ZhbF9hZGoKZmlsdGVyZWRfZ2VuZXMgPC0gTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzICU+JQogIGZpbHRlcihhdmdfbG9nMkZDID4gbG9nRkNfdXBfdGhyZXNob2xkIHwgYXZnX2xvZzJGQyA8IGxvZ0ZDX2Rvd25fdGhyZXNob2xkKSAlPiUKICBhcnJhbmdlKHBfdmFsX2FkaikKCiMgU2VwYXJhdGUgdXByZWd1bGF0ZWQgYW5kIGRvd25yZWd1bGF0ZWQgZ2VuZXMKdXByZWd1bGF0ZWRfZ2VuZXMgPC0gZmlsdGVyZWRfZ2VuZXMgJT4lCiAgZmlsdGVyKGF2Z19sb2cyRkMgPiBsb2dGQ191cF90aHJlc2hvbGQpCgpkb3ducmVndWxhdGVkX2dlbmVzIDwtIGZpbHRlcmVkX2dlbmVzICU+JQogIGZpbHRlcihhdmdfbG9nMkZDIDwgbG9nRkNfZG93bl90aHJlc2hvbGQpCgojIENoZWNrIGlmIHRoZXJlIGFyZSBmZXdlciB0aGFuIHRoZSBzcGVjaWZpZWQgbnVtYmVyIG9mIHVwcmVndWxhdGVkIGdlbmVzCmlmIChucm93KHVwcmVndWxhdGVkX2dlbmVzKSA8IFVQX2dlbmVzKSB7CiAgdG9wX3VwcmVndWxhdGVkX2dlbmVzIDwtIHVwcmVndWxhdGVkX2dlbmVzCiAgY2F0KCJOdW1iZXIgb2YgdXByZWd1bGF0ZWQgZ2VuZXMgc2VsZWN0ZWQ6IiwgbnJvdyh0b3BfdXByZWd1bGF0ZWRfZ2VuZXMpLCAiXG4iKQogIGNhdCgicF92YWxfYWRqIHZhbHVlIGZvciB0aGUgbGFzdCBzZWxlY3RlZCB1cHJlZ3VsYXRlZCBnZW5lOiIsIHRhaWwodG9wX3VwcmVndWxhdGVkX2dlbmVzJHBfdmFsX2FkaiwgMSksICJcbiIpCn0gZWxzZSB7CiAgIyBTZWxlY3QgdGhlIHNwZWNpZmllZCBudW1iZXIgb2YgdXByZWd1bGF0ZWQgZ2VuZXMKICB0b3BfdXByZWd1bGF0ZWRfZ2VuZXMgPC0gdXByZWd1bGF0ZWRfZ2VuZXMgJT4lCiAgICBoZWFkKFVQX2dlbmVzKQogIGNhdCgiTnVtYmVyIG9mIHVwcmVndWxhdGVkIGdlbmVzIHNlbGVjdGVkOiIsIG5yb3codG9wX3VwcmVndWxhdGVkX2dlbmVzKSwgIlxuIikKICBjYXQoInBfdmFsX2FkaiB2YWx1ZSBmb3IgdGhlIGxhc3Qgc2VsZWN0ZWQgdXByZWd1bGF0ZWQgZ2VuZToiLCB0YWlsKHRvcF91cHJlZ3VsYXRlZF9nZW5lcyRwX3ZhbF9hZGosIDEpLCAiXG4iKQp9CgojIENoZWNrIGlmIHRoZXJlIGFyZSBmZXdlciB0aGFuIHRoZSBzcGVjaWZpZWQgbnVtYmVyIG9mIGRvd25yZWd1bGF0ZWQgZ2VuZXMKaWYgKG5yb3coZG93bnJlZ3VsYXRlZF9nZW5lcykgPCBEb3duX2dlbmVzKSB7CiAgdG9wX2Rvd25yZWd1bGF0ZWRfZ2VuZXMgPC0gZG93bnJlZ3VsYXRlZF9nZW5lcwogIGNhdCgiTnVtYmVyIG9mIGRvd25yZWd1bGF0ZWQgZ2VuZXMgc2VsZWN0ZWQ6IiwgbnJvdyh0b3BfZG93bnJlZ3VsYXRlZF9nZW5lcyksICJcbiIpCiAgY2F0KCJwX3ZhbF9hZGogdmFsdWUgZm9yIHRoZSBsYXN0IHNlbGVjdGVkIGRvd25yZWd1bGF0ZWQgZ2VuZToiLCB0YWlsKHRvcF9kb3ducmVndWxhdGVkX2dlbmVzJHBfdmFsX2FkaiwgMSksICJcbiIpCn0gZWxzZSB7CiAgIyBTZWxlY3QgdGhlIHNwZWNpZmllZCBudW1iZXIgb2YgZG93bnJlZ3VsYXRlZCBnZW5lcwogIHRvcF9kb3ducmVndWxhdGVkX2dlbmVzIDwtIGRvd25yZWd1bGF0ZWRfZ2VuZXMgJT4lCiAgICBoZWFkKERvd25fZ2VuZXMpCiAgY2F0KCJOdW1iZXIgb2YgZG93bnJlZ3VsYXRlZCBnZW5lcyBzZWxlY3RlZDoiLCBucm93KHRvcF9kb3ducmVndWxhdGVkX2dlbmVzKSwgIlxuIikKICBjYXQoInBfdmFsX2FkaiB2YWx1ZSBmb3IgdGhlIGxhc3Qgc2VsZWN0ZWQgZG93bnJlZ3VsYXRlZCBnZW5lOiIsIHRhaWwodG9wX2Rvd25yZWd1bGF0ZWRfZ2VuZXMkcF92YWxfYWRqLCAxKSwgIlxuIikKfQoKIyBDb21iaW5lIHRoZSB0b3AgdXByZWd1bGF0ZWQgYW5kIGRvd25yZWd1bGF0ZWQgZ2VuZXMKdG9wX2dlbmVzIDwtIGJpbmRfcm93cyh0b3BfdXByZWd1bGF0ZWRfZ2VuZXMsIHRvcF9kb3ducmVndWxhdGVkX2dlbmVzKQoKIyBDaGVjayBmb3IgbWlzc2luZyBnZW5lcyAoTkFzKSBpbiB0aGUgZ2VuZSBjb2x1bW4gYW5kIHJlbW92ZSB0aGVtCnRvcF9nZW5lcyA8LSBuYS5vbWl0KHRvcF9nZW5lcykKCiMgU2F2ZSB1cHJlZ3VsYXRlZCBhbmQgZG93bnJlZ3VsYXRlZCBnZW5lIHJlc3VsdHMgdG8gQ1NWCndyaXRlLmNzdih0b3BfdXByZWd1bGF0ZWRfZ2VuZXMsIHBhc3RlMChvdXRwdXRfZm9sZGVyLCAidXByZWd1bGF0ZWRfZ2VuZXMuY3N2IiksIHJvdy5uYW1lcyA9IEZBTFNFKQp3cml0ZS5jc3YodG9wX2Rvd25yZWd1bGF0ZWRfZ2VuZXMsIHBhc3RlMChvdXRwdXRfZm9sZGVyLCAiZG93bnJlZ3VsYXRlZF9nZW5lcy5jc3YiKSwgcm93Lm5hbWVzID0gRkFMU0UpCgojIENvbnZlcnQgZ2VuZSBzeW1ib2xzIHRvIEVudHJleiBJRHMgZm9yIGVucmljaG1lbnQgYW5hbHlzaXMsIHdpdGggY2hlY2tzIGZvciBtaXNzaW5nIHZhbHVlcwp1cHJlZ3VsYXRlZF9lbnRyZXogPC0gYml0cih0b3BfdXByZWd1bGF0ZWRfZ2VuZXMkZ2VuZSwgZnJvbVR5cGUgPSAiU1lNQk9MIiwgdG9UeXBlID0gIkVOVFJFWklEIiwgT3JnRGIgPSBvcmcuSHMuZWcuZGIpCmRvd25yZWd1bGF0ZWRfZW50cmV6IDwtIGJpdHIodG9wX2Rvd25yZWd1bGF0ZWRfZ2VuZXMkZ2VuZSwgZnJvbVR5cGUgPSAiU1lNQk9MIiwgdG9UeXBlID0gIkVOVFJFWklEIiwgT3JnRGIgPSBvcmcuSHMuZWcuZGIpCgojIENoZWNrIGZvciBtaXNzaW5nIEVudHJleiBJRHMgYW5kIHJldGFpbiBnZW5lIG5hbWVzCm1pc3NpbmdfdXByZWd1bGF0ZWQgPC0gdG9wX3VwcmVndWxhdGVkX2dlbmVzJGdlbmVbIXRvcF91cHJlZ3VsYXRlZF9nZW5lcyRnZW5lICVpbiUgdXByZWd1bGF0ZWRfZW50cmV6JFNZTUJPTF0KbWlzc2luZ19kb3ducmVndWxhdGVkIDwtIHRvcF9kb3ducmVndWxhdGVkX2dlbmVzJGdlbmVbIXRvcF9kb3ducmVndWxhdGVkX2dlbmVzJGdlbmUgJWluJSBkb3ducmVndWxhdGVkX2VudHJleiRTWU1CT0xdCgojIFByaW50IG91dCB0aGUgbWlzc2luZyBnZW5lIHN5bWJvbHMgZm9yIGRlYnVnZ2luZwpjYXQoIk1pc3NpbmcgdXByZWd1bGF0ZWQgZ2VuZXM6XG4iLCBtaXNzaW5nX3VwcmVndWxhdGVkLCAiXG4iKQpjYXQoIk1pc3NpbmcgZG93bnJlZ3VsYXRlZCBnZW5lczpcbiIsIG1pc3NpbmdfZG93bnJlZ3VsYXRlZCwgIlxuIikKCiMgTWVyZ2UgdGhlIEVudHJleiBJRHMgYmFjayB3aXRoIHRoZSBvcmlnaW5hbCBkYXRhIGZyYW1lcyB0byByZXRhaW4gZ2VuZSBuYW1lcwp0b3BfdXByZWd1bGF0ZWRfZ2VuZXMgPC0gbWVyZ2UodG9wX3VwcmVndWxhdGVkX2dlbmVzLCB1cHJlZ3VsYXRlZF9lbnRyZXosIGJ5LnggPSAiZ2VuZSIsIGJ5LnkgPSAiU1lNQk9MIiwgYWxsLnggPSBUUlVFKQp0b3BfZG93bnJlZ3VsYXRlZF9nZW5lcyA8LSBtZXJnZSh0b3BfZG93bnJlZ3VsYXRlZF9nZW5lcywgZG93bnJlZ3VsYXRlZF9lbnRyZXosIGJ5LnggPSAiZ2VuZSIsIGJ5LnkgPSAiU1lNQk9MIiwgYWxsLnggPSBUUlVFKQoKIyBSZW1vdmUgZ2VuZXMgdGhhdCBjb3VsZG4ndCBiZSBtYXBwZWQgdG8gRW50cmV6IElEcwp0b3BfdXByZWd1bGF0ZWRfZ2VuZXMgPC0gdG9wX3VwcmVndWxhdGVkX2dlbmVzWyFpcy5uYSh0b3BfdXByZWd1bGF0ZWRfZ2VuZXMkRU5UUkVaSUQpLCBdCnRvcF9kb3ducmVndWxhdGVkX2dlbmVzIDwtIHRvcF9kb3ducmVndWxhdGVkX2dlbmVzWyFpcy5uYSh0b3BfZG93bnJlZ3VsYXRlZF9nZW5lcyRFTlRSRVpJRCksIF0KCiMgRXh0cmFjdCBFbnRyZXogSURzIGZvciBlbnJpY2htZW50IGFuYWx5c2lzCnVwcmVndWxhdGVkX2VudHJleiA8LSB0b3BfdXByZWd1bGF0ZWRfZ2VuZXMkRU5UUkVaSUQKZG93bnJlZ3VsYXRlZF9lbnRyZXogPC0gdG9wX2Rvd25yZWd1bGF0ZWRfZ2VuZXMkRU5UUkVaSUQKCiMgRGVmaW5lIGEgZnVuY3Rpb24gdG8gc2FmZWx5IHJ1biBlbnJpY2htZW50LCBwbG90IHJlc3VsdHMsIGFuZCBzYXZlIHRoZW0Kc2FmZV9lbnJpY2hHTyA8LSBmdW5jdGlvbihnZW5lX2xpc3QsIHRpdGxlLCBmaWxlbmFtZSkgewogIGlmIChsZW5ndGgoZ2VuZV9saXN0KSA+IDApIHsKICAgIHJlc3VsdCA8LSBlbnJpY2hHTyhnZW5lID0gZ2VuZV9saXN0LCBPcmdEYiA9IG9yZy5Icy5lZy5kYiwga2V5VHlwZSA9ICJTWU1CT0wiLAogICAgICAgICAgICAgICAgICAgICAgIG9udCA9ICJCUCIsIHBBZGp1c3RNZXRob2QgPSAiQkgiLCBwdmFsdWVDdXRvZmYgPSAwLjA1LCByZWFkYWJsZSA9IFRSVUUpCiAgICBpZiAoIWlzLm51bGwocmVzdWx0KSAmJiBucm93KGFzLmRhdGEuZnJhbWUocmVzdWx0KSkgPiAwKSB7CiAgICAgIHAgPC0gZG90cGxvdChyZXN1bHQsIHNob3dDYXRlZ29yeSA9IDEwLCB0aXRsZSA9IHRpdGxlKQogICAgICBwcmludChwKSAgCiAgICAgIGdnc2F2ZShwYXN0ZTAob3V0cHV0X2ZvbGRlciwgZ3N1YigiLmNzdiIsICJfZG90cGxvdC5wbmciLCBmaWxlbmFtZSkpLCBwbG90ID0gcCwgd2lkdGggPSA4LCBoZWlnaHQgPSA2KQogICAgICB3cml0ZS5jc3YoYXMuZGF0YS5mcmFtZShyZXN1bHQpLCBmaWxlID0gcGFzdGUwKG91dHB1dF9mb2xkZXIsIGZpbGVuYW1lKSwgcm93Lm5hbWVzID0gRkFMU0UpCiAgICB9IGVsc2UgewogICAgICBtZXNzYWdlKHBhc3RlKCJObyBzaWduaWZpY2FudCBlbnJpY2htZW50IGZvdW5kIGZvcjoiLCB0aXRsZSkpCiAgICB9CiAgfSBlbHNlIHsKICAgIG1lc3NhZ2UocGFzdGUoIk5vIGdlbmVzIGZvdW5kIGZvcjoiLCB0aXRsZSkpCiAgfQp9CgpzYWZlX2VucmljaEtFR0cgPC0gZnVuY3Rpb24oZW50cmV6X2xpc3QsIHRpdGxlLCBmaWxlbmFtZSkgewogIGlmIChsZW5ndGgoZW50cmV6X2xpc3QpID4gMCkgewogICAgcmVzdWx0IDwtIGVucmljaEtFR0coZ2VuZSA9IGVudHJlel9saXN0LCBvcmdhbmlzbSA9ICJoc2EiLCBwdmFsdWVDdXRvZmYgPSAwLjA1KQogICAgaWYgKCFpcy5udWxsKHJlc3VsdCkgJiYgbnJvdyhhcy5kYXRhLmZyYW1lKHJlc3VsdCkpID4gMCkgewogICAgICByZXN1bHQgPC0gc2V0UmVhZGFibGUocmVzdWx0LCBPcmdEYiA9IG9yZy5Icy5lZy5kYiwga2V5VHlwZSA9ICJFTlRSRVpJRCIpCiAgICAgIHAgPC0gZG90cGxvdChyZXN1bHQsIHNob3dDYXRlZ29yeSA9IDEwLCB0aXRsZSA9IHRpdGxlKQogICAgICBwcmludChwKQogICAgICBnZ3NhdmUocGFzdGUwKG91dHB1dF9mb2xkZXIsIGdzdWIoIi5jc3YiLCAiX2RvdHBsb3QucG5nIiwgZmlsZW5hbWUpKSwgcGxvdCA9IHAsIHdpZHRoID0gOCwgaGVpZ2h0ID0gNikKICAgICAgd3JpdGUuY3N2KGFzLmRhdGEuZnJhbWUocmVzdWx0KSwgZmlsZSA9IHBhc3RlMChvdXRwdXRfZm9sZGVyLCBmaWxlbmFtZSksIHJvdy5uYW1lcyA9IEZBTFNFKQogICAgfSBlbHNlIHsKICAgICAgbWVzc2FnZShwYXN0ZSgiTm8gc2lnbmlmaWNhbnQgS0VHRyBwYXRod2F5cyBmb3VuZCBmb3I6IiwgdGl0bGUpKQogICAgfQogIH0gZWxzZSB7CiAgICBtZXNzYWdlKHBhc3RlKCJObyBnZW5lcyBmb3VuZCBmb3I6IiwgdGl0bGUpKQogIH0KfQoKc2FmZV9lbnJpY2hSZWFjdG9tZSA8LSBmdW5jdGlvbihlbnRyZXpfbGlzdCwgdGl0bGUsIGZpbGVuYW1lKSB7CiAgaWYgKGxlbmd0aChlbnRyZXpfbGlzdCkgPiAwKSB7CiAgICByZXN1bHQgPC0gZW5yaWNoUGF0aHdheShnZW5lID0gZW50cmV6X2xpc3QsIG9yZ2FuaXNtID0gImh1bWFuIiwgcHZhbHVlQ3V0b2ZmID0gMC4wNSkKICAgIGlmICghaXMubnVsbChyZXN1bHQpICYmIG5yb3coYXMuZGF0YS5mcmFtZShyZXN1bHQpKSA+IDApIHsKICAgICAgcmVzdWx0IDwtIHNldFJlYWRhYmxlKHJlc3VsdCwgT3JnRGIgPSBvcmcuSHMuZWcuZGIsIGtleVR5cGUgPSAiRU5UUkVaSUQiKQogICAgICBwIDwtIGRvdHBsb3QocmVzdWx0LCBzaG93Q2F0ZWdvcnkgPSAxMCwgdGl0bGUgPSB0aXRsZSkKICAgICAgcHJpbnQocCkKICAgICAgZ2dzYXZlKHBhc3RlMChvdXRwdXRfZm9sZGVyLCBnc3ViKCIuY3N2IiwgIl9kb3RwbG90LnBuZyIsIGZpbGVuYW1lKSksIHBsb3QgPSBwLCB3aWR0aCA9IDgsIGhlaWdodCA9IDYpCiAgICAgIHdyaXRlLmNzdihhcy5kYXRhLmZyYW1lKHJlc3VsdCksIGZpbGUgPSBwYXN0ZTAob3V0cHV0X2ZvbGRlciwgZmlsZW5hbWUpLCByb3cubmFtZXMgPSBGQUxTRSkKICAgIH0gZWxzZSB7CiAgICAgIG1lc3NhZ2UocGFzdGUoIk5vIHNpZ25pZmljYW50IFJlYWN0b21lIHBhdGh3YXlzIGZvdW5kIGZvcjoiLCB0aXRsZSkpCiAgICB9CiAgfSBlbHNlIHsKICAgIG1lc3NhZ2UocGFzdGUoIk5vIGdlbmVzIGZvdW5kIGZvcjoiLCB0aXRsZSkpCiAgfQp9CgojIFBlcmZvcm0gZW5yaWNobWVudCBhbmFseXNlcywgZ2VuZXJhdGUgcGxvdHMsIGFuZCBzYXZlIHJlc3VsdHMKc2FmZV9lbnJpY2hHTyh0b3BfdXByZWd1bGF0ZWRfZ2VuZXMkZ2VuZSwgIkdPIEVucmljaG1lbnQgZm9yIFVwcmVndWxhdGVkIEdlbmVzIiwgInVwcmVndWxhdGVkX0dPX3Jlc3VsdHMuY3N2IikKc2FmZV9lbnJpY2hHTyh0b3BfZG93bnJlZ3VsYXRlZF9nZW5lcyRnZW5lLCAiR08gRW5yaWNobWVudCBmb3IgRG93bnJlZ3VsYXRlZCBHZW5lcyIsICJkb3ducmVndWxhdGVkX0dPX3Jlc3VsdHMuY3N2IikKCnNhZmVfZW5yaWNoS0VHRyh1cHJlZ3VsYXRlZF9lbnRyZXosICJLRUdHIFBhdGh3YXkgRW5yaWNobWVudCBmb3IgVXByZWd1bGF0ZWQgR2VuZXMiLCAidXByZWd1bGF0ZWRfS0VHR19yZXN1bHRzLmNzdiIpCnNhZmVfZW5yaWNoS0VHRyhkb3ducmVndWxhdGVkX2VudHJleiwgIktFR0cgUGF0aHdheSBFbnJpY2htZW50IGZvciBEb3ducmVndWxhdGVkIEdlbmVzIiwgImRvd25yZWd1bGF0ZWRfS0VHR19yZXN1bHRzLmNzdiIpCgpzYWZlX2VucmljaFJlYWN0b21lKHVwcmVndWxhdGVkX2VudHJleiwgIlJlYWN0b21lIFBhdGh3YXkgRW5yaWNobWVudCBmb3IgVXByZWd1bGF0ZWQgR2VuZXMiLCAidXByZWd1bGF0ZWRfUmVhY3RvbWVfcmVzdWx0cy5jc3YiKQpzYWZlX2VucmljaFJlYWN0b21lKGRvd25yZWd1bGF0ZWRfZW50cmV6LCAiUmVhY3RvbWUgUGF0aHdheSBFbnJpY2htZW50IGZvciBEb3ducmVndWxhdGVkIEdlbmVzIiwgImRvd25yZWd1bGF0ZWRfUmVhY3RvbWVfcmVzdWx0cy5jc3YiKQoKYGBgCgojIyBFbnJpY2htZW50IEFuYWx5c2lzX0hhbGxtYXJrCmBgYHtyICwgZmlnLmhlaWdodD04LCBmaWcud2lkdGg9MTJ9CgojIExvYWQgbmVjZXNzYXJ5IGxpYnJhcmllcwpsaWJyYXJ5KGNsdXN0ZXJQcm9maWxlcikKbGlicmFyeShvcmcuSHMuZWcuZGIpCmxpYnJhcnkobXNpZ2RicikKbGlicmFyeShlbnJpY2hwbG90KQpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkoZHBseXIpCgojIERlZmluZSB0aGUgb3V0cHV0IGZvbGRlciB3aGVyZSB0aGUgcmVzdWx0cyB3aWxsIGJlIHNhdmVkCm91dHB1dF9mb2xkZXIgPC0gIk5LX1Byb2xpZmVyYXRpbmdfdnNfQ29udHJvbC8iCgojIENyZWF0ZSB0aGUgb3V0cHV0IGZvbGRlciBpZiBpdCBkb2Vzbid0IGV4aXN0CmlmICghZGlyLmV4aXN0cyhvdXRwdXRfZm9sZGVyKSkgewogIGRpci5jcmVhdGUob3V0cHV0X2ZvbGRlcikKfQoKIyBMb2FkIEhhbGxtYXJrIGdlbmUgc2V0cyBmcm9tIG1zaWdkYnIKaGFsbG1hcmtfc2V0cyA8LSBtc2lnZGJyKHNwZWNpZXMgPSAiSG9tbyBzYXBpZW5zIiwgY29sbGVjdGlvbiA9ICJIIikgICMgIkgiIGlzIGZvciBIYWxsbWFyayBnZW5lIHNldHMKCiMgQ29udmVydCBnZW5lIHN5bWJvbHMgdG8gdXBwZXJjYXNlIGZvciBjb25zaXN0ZW5jeQp0b3BfdXByZWd1bGF0ZWRfZ2VuZXMkZ2VuZSA8LSB0b3VwcGVyKHRvcF91cHJlZ3VsYXRlZF9nZW5lcyRnZW5lKQp0b3BfZG93bnJlZ3VsYXRlZF9nZW5lcyRnZW5lIDwtIHRvdXBwZXIodG9wX2Rvd25yZWd1bGF0ZWRfZ2VuZXMkZ2VuZSkKCiMgQ2hlY2sgZm9yIG92ZXJsYXAgYmV0d2VlbiB5b3VyIHVwcmVndWxhdGVkL2Rvd25yZWd1bGF0ZWQgZ2VuZXMgYW5kIEhhbGxtYXJrIGdlbmUgc2V0cwp1cHJlZ3VsYXRlZF9pbl9oYWxsbWFyayA8LSBpbnRlcnNlY3QodG9wX3VwcmVndWxhdGVkX2dlbmVzJGdlbmUsIGhhbGxtYXJrX3NldHMkZ2VuZV9zeW1ib2wpCmRvd25yZWd1bGF0ZWRfaW5faGFsbG1hcmsgPC0gaW50ZXJzZWN0KHRvcF9kb3ducmVndWxhdGVkX2dlbmVzJGdlbmUsIGhhbGxtYXJrX3NldHMkZ2VuZV9zeW1ib2wpCgojIFByaW50IHRoZSBudW1iZXIgb2Ygb3ZlcmxhcHBpbmcgZ2VuZXMgZm9yIGJvdGggdXByZWd1bGF0ZWQgYW5kIGRvd25yZWd1bGF0ZWQgZ2VuZXMKY2F0KCJOdW1iZXIgb2YgdXByZWd1bGF0ZWQgZ2VuZXMgaW4gSGFsbG1hcmsgZ2VuZSBzZXRzOiIsIGxlbmd0aCh1cHJlZ3VsYXRlZF9pbl9oYWxsbWFyayksICJcbiIpCmNhdCgiTnVtYmVyIG9mIGRvd25yZWd1bGF0ZWQgZ2VuZXMgaW4gSGFsbG1hcmsgZ2VuZSBzZXRzOiIsIGxlbmd0aChkb3ducmVndWxhdGVkX2luX2hhbGxtYXJrKSwgIlxuIikKCiMgSWYgdGhlcmUgYXJlIGdlbmVzIHRvIGFuYWx5emUsIHByb2NlZWQgd2l0aCBlbnJpY2htZW50IGFuYWx5c2lzCmlmIChsZW5ndGgodXByZWd1bGF0ZWRfaW5faGFsbG1hcmspID4gMCkgewogICMgUGVyZm9ybSBlbnJpY2htZW50IGFuYWx5c2lzIGZvciB1cHJlZ3VsYXRlZCBnZW5lcyB1c2luZyBIYWxsbWFyayBnZW5lIHNldHMKICBoYWxsbWFya191cCA8LSBlbnJpY2hlcihnZW5lID0gdXByZWd1bGF0ZWRfaW5faGFsbG1hcmssIAogICAgICAgICAgICAgICAgICAgICAgICAgIFRFUk0yR0VORSA9IGhhbGxtYXJrX3NldHNbLCBjKCJnc19uYW1lIiwgImdlbmVfc3ltYm9sIildLCAgIyBFbnN1cmUgVEVSTTJHRU5FIHVzZXMgY29ycmVjdCBjb2x1bW5zCiAgICAgICAgICAgICAgICAgICAgICAgICAgcHZhbHVlQ3V0b2ZmID0gMC4wNSkKICAjIENoZWNrIGlmIHJlc3VsdHMgZXhpc3QKICBpZiAoIWlzLm51bGwoaGFsbG1hcmtfdXApICYmIG5yb3coaGFsbG1hcmtfdXApID4gMCkgewogICAgIyBWaXN1YWxpemUgcmVzdWx0cyBpZiBhdmFpbGFibGUKICAgIHVwX2RvdHBsb3QgPC0gZG90cGxvdChoYWxsbWFya191cCwgc2hvd0NhdGVnb3J5ID0gMjAsIHRpdGxlID0gIkhhbGxtYXJrIFBhdGh3YXkgRW5yaWNobWVudCBmb3IgVXByZWd1bGF0ZWQgR2VuZXMiKQogICAgCiAgICAjIERpc3BsYXkgdGhlIHBsb3QgaW4gdGhlIG5vdGVib29rCiAgICBwcmludCh1cF9kb3RwbG90KQogICAgCiAgICAjIFNhdmUgdGhlIGRvdHBsb3QgdG8gYSBQTkcgZmlsZQogICAgZ2dzYXZlKHBhc3RlMChvdXRwdXRfZm9sZGVyLCAiaGFsbG1hcmtfdXByZWd1bGF0ZWRfZG90cGxvdC5wbmciKSwgcGxvdCA9IHVwX2RvdHBsb3QsIHdpZHRoID0gMTAsIGhlaWdodCA9IDgpCiAgICAKICAgICMgT3B0aW9uYWxseSwgc2F2ZSB0aGUgcmVzdWx0cyBhcyBDU1YKICAgIHdyaXRlLmNzdihhcy5kYXRhLmZyYW1lKGhhbGxtYXJrX3VwKSwgZmlsZSA9IHBhc3RlMChvdXRwdXRfZm9sZGVyLCAiaGFsbG1hcmtfdXByZWd1bGF0ZWRfZW5yaWNobWVudC5jc3YiKSwgcm93Lm5hbWVzID0gRkFMU0UpCiAgfSBlbHNlIHsKICAgIGNhdCgiTm8gc2lnbmlmaWNhbnQgZW5yaWNobWVudCBmb3VuZCBmb3IgdXByZWd1bGF0ZWQgZ2VuZXMuXG4iKQogIH0KfSBlbHNlIHsKICBjYXQoIk5vIHVwcmVndWxhdGVkIGdlbmVzIG92ZXJsYXAgd2l0aCBIYWxsbWFyayBnZW5lIHNldHMuXG4iKQp9CgppZiAobGVuZ3RoKGRvd25yZWd1bGF0ZWRfaW5faGFsbG1hcmspID4gMCkgewogICMgUGVyZm9ybSBlbnJpY2htZW50IGFuYWx5c2lzIGZvciBkb3ducmVndWxhdGVkIGdlbmVzIHVzaW5nIEhhbGxtYXJrIGdlbmUgc2V0cwogIGhhbGxtYXJrX2Rvd24gPC0gZW5yaWNoZXIoZ2VuZSA9IGRvd25yZWd1bGF0ZWRfaW5faGFsbG1hcmssIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgVEVSTTJHRU5FID0gaGFsbG1hcmtfc2V0c1ssIGMoImdzX25hbWUiLCAiZ2VuZV9zeW1ib2wiKV0sICAjIEVuc3VyZSBURVJNMkdFTkUgdXNlcyBjb3JyZWN0IGNvbHVtbnMKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHB2YWx1ZUN1dG9mZiA9IDAuMDUpCiAgIyBDaGVjayBpZiByZXN1bHRzIGV4aXN0CiAgaWYgKCFpcy5udWxsKGhhbGxtYXJrX2Rvd24pICYmIG5yb3coaGFsbG1hcmtfZG93bikgPiAwKSB7CiAgICAjIFZpc3VhbGl6ZSByZXN1bHRzIGlmIGF2YWlsYWJsZQogICAgZG93bl9kb3RwbG90IDwtIGRvdHBsb3QoaGFsbG1hcmtfZG93biwgc2hvd0NhdGVnb3J5ID0gMjAsIHRpdGxlID0gIkhhbGxtYXJrIFBhdGh3YXkgRW5yaWNobWVudCBmb3IgRG93bnJlZ3VsYXRlZCBHZW5lcyIpCiAgICAKICAgICMgRGlzcGxheSB0aGUgcGxvdCBpbiB0aGUgbm90ZWJvb2sKICAgIHByaW50KGRvd25fZG90cGxvdCkKICAgIAogICAgIyBTYXZlIHRoZSBkb3RwbG90IHRvIGEgUE5HIGZpbGUKICAgIGdnc2F2ZShwYXN0ZTAob3V0cHV0X2ZvbGRlciwgImhhbGxtYXJrX2Rvd25yZWd1bGF0ZWRfZG90cGxvdC5wbmciKSwgcGxvdCA9IGRvd25fZG90cGxvdCwgd2lkdGggPSAxMCwgaGVpZ2h0ID0gOCkKICAgIAogICAgIyBPcHRpb25hbGx5LCBzYXZlIHRoZSByZXN1bHRzIGFzIENTVgogICAgd3JpdGUuY3N2KGFzLmRhdGEuZnJhbWUoaGFsbG1hcmtfZG93biksIGZpbGUgPSBwYXN0ZTAob3V0cHV0X2ZvbGRlciwgImhhbGxtYXJrX2Rvd25yZWd1bGF0ZWRfZW5yaWNobWVudC5jc3YiKSwgcm93Lm5hbWVzID0gRkFMU0UpCiAgfSBlbHNlIHsKICAgIGNhdCgiTm8gc2lnbmlmaWNhbnQgZW5yaWNobWVudCBmb3VuZCBmb3IgZG93bnJlZ3VsYXRlZCBnZW5lcy5cbiIpCiAgfQp9IGVsc2UgewogIGNhdCgiTm8gZG93bnJlZ3VsYXRlZCBnZW5lcyBvdmVybGFwIHdpdGggSGFsbG1hcmsgZ2VuZSBzZXRzLlxuIikKfQoKCmBgYAoKCg==