library(ggplot2)
programm 5
Implement an R program to create a histogram illustrating the distribution of a continuous variable with overlaya of desitny curves for each group using ggplot2.
Step 1: load necessary libraries
Step 2: load required dataset
str(iris)#structure of dataset is given using 'str'
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
Step 3: create histogram with group-wise density curves
Step 3.1: intialize the ggplot with asethetic mapping
<-ggplot(data=iris,aes(x=Petal.Length,fill=Species))
p p
Step3.2:add histogram layers
<-p+geom_histogram(aes(y= ..density..),
palpha=0.4,
position="identity",
bins=30)
p
Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
ℹ Please use `after_stat(density)` instead.
Step 3.3: add a density curve layer
<-p+ geom_density(aes(color=Species),
psize=1.2)
Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.
p
Step 3.4: labs declaration
<-p+labs(
ptitle="distribution of petal length with group-wise density curves",
x="petal length",
y="density",
fill="Species"
+
)theme_minimal()
p